4 resultados para BIOMASS PYROLYSIS LIQUID

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Vordergrund der Arbeit stand die Erfassung der mikrobiellen Biomasse bzw. Residualmasse an der Wurzeloberfläche, im Rhizosphärenboden und im umgebenden Boden. Durch den Vergleich von verschiedenen Methoden zur Erfassung der mikrobiellen Biomasse wurden die Gehalte von pilzlichem und bakteriellem Kohlenstoff an der Rhizoplane und in der Rhizosphäre quantifiziert. Dabei wurde die Fumigations-Extraktions-Methode zur Erfassung der mikrobiellen Biomasse eingesetzt. Ergosterol diente als Indikator für die pilzliche Biomasse und die Aminozucker Glucosamin und Muraminsäure sollten Aufschluss geben über die bakterielle und pilzliche Biomasse bzw. Residualmasse in den drei Probenfraktionen. Dazu wurden Umrechnungsfaktoren erstellt, die zur Berechnung des bakteriellen und pilzlichen Kohlenstoffs aus den Gehalten von Muraminsäure und Pilz-Glucosamin dienten. Die Bestimmung von Aminozuckern wurde insoweit modifiziert, dass sowohl in Boden- als auch in Wurzelhydrolysaten die Messung von Glucosamin, Galactosamin, Muraminsäure und Mannosamin gleichzeitig als automatisiertes Standardverfahren mit Hilfe der HPLC erfolgen konnte. Es wurden drei Gefäßversuche durchgeführt: Im ersten Versuch wurde der Einfluss der Pflanzenart auf die mikrobielle Besiedlung der Wurzeloberflächen untersucht. Dabei wurden Wurzeln und Rhizosphärenboden von 15 verschiedenen Pflanzenarten miteinander verglichen. Im zweiten Versuch stand der Einfluss der mikrobiellen Biomasse eines Bodens auf die mikrobielle Besiedlung von Wurzeloberflächen im Vordergrund. Deutsches Weidelgras (Lolium perenne L.) wurde auf sieben verschiedenen Böden angezogen. Bei den Böden handelte es sich um sechs Oberböden, die sich hinsichtlich des Bodentyps und der Bewirtschaftungsform voneinander unterschieden, und einen Unterboden. Im dritten Versuch wurde die mikrobielle Besiedlung von Wurzeln nach teilweiser und vollständiger Entfernung der oberirdischen Biomasse beobachtet. Welsches Weidelgras (Lolium multiflorum Lam.) wurde 24 Tage nach der Aussaat beschnitten. Anschließend wurde über einen Versuchszeitraum von acht Tagen die mikrobielle Besiedlung an den Wurzeln und in den Bodenfraktionen bestimmt. Es bestätigte sich, dass der Einfluss der einzelnen Pflanzenart von entscheidender Bedeutung für die mikrobielle Besiedlung von Wurzeln ist. Bei fast allen Pflanzen wurde die mikrobielle Biomasse an den Wurzeln von Pilzen dominiert. Das Verhältnis von pilzlichem zu bakteriellem Kohlenstoff an den Wurzeln der 15 Pflanzenarten lag im Mittel bei 2,6. Bei der Betrachtung verschiedener Böden zeigte sich, dass die mikrobielle Besiedlung in tieferen Bodenschichten signifikant niedriger ist als in den Oberböden. Dabei war der Pilzanteil an der mikrobiellen Biomasse im Unterboden deutlich erhöht. Der Vergleich der Oberböden untereinander ergab, dass sowohl der Bodentyp als auch die Bewirtschaftungsform einen signifikanten Einfluss auf mikrobielle Besiedlung ausüben. Durch die teilweise oder vollständige Entfernung der oberirdischen Biomasse wurde eine Veränderung der mikrobiellen Besiedlung an den Wurzeln beobachtet. Das Verhältnis von pilzlichem zu bakteriellem Kohlenstoff sank in dem Versuchszeitraum von 2,5 auf 1,4. Dabei war die Förderung der Pilze in der Variante mit teilweise entfernter oberirdischer Biomasse relativ größer als in der Variante mit vollständig entfernter oberirdischer Biomasse. Entgegen der weit verbreiteten Annahme, dass bei den wurzelbesiedelnden Mikroorganismen die Bakterien gegenüber den Pilzen dominieren, zeigten die Ergebnisse ein gegensätzliches Bild. In allen drei Versuchen ergab sich gleichermaßen, dass sowohl im Boden als auch an den Wurzeln die Pilze gegenüber den Bakterien dominieren.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.