2 resultados para B-learning environments
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In der Dissertation wird der Frage nachgegangen, welche globalen bildungspolitischen Maßnahmen erforderlich sind, um auch bislang exkludierten Menschen den Kompetenzerwerb zu ermöglichen, der benötigt wird, eine positive User Experience in benutzergenerierten, digitalen Lernumgebungen auszubilden, damit sie an der modernen Weltgesellschaft selbstbestimmt teilhaben können. Zu diesem Zweck wurden Castells ‘Netzwerkgesellschaft’ und Csikszentmihalys ‘Theorie der optimalen Erfahrung’ als analytische Grundlagen zur Einordnung der sozialen Netzwerk-Aktivitäten herangezogen. Dies ermöglichte es, unter Rückgriff auf aktuelle Lerntheorien, Kompetenzdebatten, ökonomische Analysen des Bildungssystems und User Experience-Forschungen, einige individuelle und gesamtgesellschaftliche Voraussetzungen abzuleiten, um in der Netzwerkgesellschaft konstruktiv überleben zu können. Mit Blick auf unterschiedliche sozio-kulturelle Bedingungen für persönlichen Flow im ‘space of flows’ liessen sich schließlich differenzierte Flow-Kriterien entwickeln, die als Grundlage für die Operationalisierung im Rahmen einer Real-Time Delphi (RTD)-Studie mit einem internationalen Expertinnen-Panel dienen konnten. Ziel war es, bildungspolitische Ansatzpunkte zu finden, den bislang Exkludierten bis zum Jahre 2020 erste Rahmenbedingungen zu bieten, damit sie potentiell teilhaben können an der Gestaltung der zukünftigen Netzwerkgesellschaft. Das Ergebnis der Expertinnen-Befragung wurde unter Rückgriff auf aktuelle Global und Educational Governance-Studien und das Einflusspotenzial der Zivilgesellschaft auf den Digital Divide reflektiert. Vor diesem Hintergrund konnten abschließend vier bildungspolitische Verlaufsszenarien entworfen werden, die es ermöglichen könnten, bis 2020 die Kluft zu den global Exkludierten wenigstens etwas zu schließen.
Resumo:
Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.