163 resultados para Automatic Data Processing
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Zur Senkung von Kosten werden in vielen Unternehmen Dienstleistungen, die nicht zur Kernkompetenz gehören, an externe Dienstleister ausgelagert. Dieser Prozess wird auch als Outsourcing bezeichnet. Die dadurch entstehenden Abhängigkeiten zu den externen Dienstleistern werden mit Hilfe von Service Level Agreements (SLAs) vertraglich geregelt. Die Aufgabe des Service Level Managements (SLM) ist es, die Einhaltung der vertraglich fixierten Dienstgüteparameter zu überwachen bzw. sicherzustellen. Für eine automatische Bearbeitung ist daher eine formale Spezifikation von SLAs notwendig. Da der Markt eine Vielzahl von unterschiedlichen SLM-Werkzeugen hervorgebracht hat, entstehen in der Praxis Probleme durch proprietäre SLA-Formate und fehlende Spezifikationsmethoden. Daraus resultiert eine Werkzeugabhängigkeit und eine limitierte Wiederverwendbarkeit bereits spezifizierter SLAs. In der vorliegenden Arbeit wird ein Ansatz für ein plattformunabhängiges Service Level Management entwickelt. Ziel ist eine Vereinheitlichung der Modellierung, so dass unterschiedliche Managementansätze integriert und eine Trennung zwischen Problem- und Technologiedomäne erreicht wird. Zudem wird durch die Plattformunabhängigkeit eine hohe zeitliche Stabilität erstellter Modelle erreicht. Weiteres Ziel der Arbeit ist, die Wiederverwendbarkeit modellierter SLAs zu gewährleisten und eine prozessorientierte Modellierungsmethodik bereitzustellen. Eine automatisierte Etablierung modellierter SLAs ist für eine praktische Nutzung von entscheidender Relevanz. Zur Erreichung dieser Ziele werden die Prinzipien der Model Driven Architecture (MDA) auf die Problemdomäne des Service Level Managements angewandt. Zentrale Idee der Arbeit ist die Definition von SLA-Mustern, die konfigurationsunabhängige Abstraktionen von Service Level Agreements darstellen. Diese SLA-Muster entsprechen dem Plattformunabhängigen Modell (PIM) der MDA. Durch eine geeignete Modelltransformation wird aus einem SLA-Muster eine SLA-Instanz generiert, die alle notwendigen Konfigurationsinformationen beinhaltet und bereits im Format der Zielplattform vorliegt. Eine SLA-Instanz entspricht damit dem Plattformspezifischen Modell (PSM) der MDA. Die Etablierung der SLA-Instanzen und die daraus resultierende Konfiguration des Managementsystems entspricht dem Plattformspezifischen Code (PSC) der MDA. Nach diesem Schritt ist das Managementsystem in der Lage, die im SLA vereinbarten Dienstgüteparameter eigenständig zu überwachen. Im Rahmen der Arbeit wurde eine UML-Erweiterung definiert, die eine Modellierung von SLA-Mustern mit Hilfe eines UML-Werkzeugs ermöglicht. Hierbei kann die Modellierung rein graphisch als auch unter Einbeziehung der Object Constraint Language (OCL) erfolgen. Für die praktische Realisierung des Ansatzes wurde eine Managementarchitektur entwickelt, die im Rahmen eines Prototypen realisiert wurde. Der Gesamtansatz wurde anhand einer Fallstudie evaluiert.
Resumo:
Analysis by reduction is a linguistically motivated method for checking correctness of a sentence. It can be modelled by restarting automata. In this paper we propose a method for learning restarting automata which are strictly locally testable (SLT-R-automata). The method is based on the concept of identification in the limit from positive examples only. Also we characterize the class of languages accepted by SLT-R-automata with respect to the Chomsky hierarchy.
Resumo:
Die Technologie dienstorientierter Architekturen (Service-oriented Architectures, kurz SOA) weckt große Visionen auf Seiten der Industrie wie auch der Forschung. Sie hat sich als derzeit ideale Lösung für Umgebungen, in denen sich die Anforderungen an die IT-Bedürfnisse rapide ändern, erwiesen. Heutige IT-Systeme müssen Managementaufgaben wie Softwareinstallation, -anpassung oder -austausch erlauben, ohne dabei den laufenden Betrieb wesentlich zu stören. Die dafür nötige Flexibilität bieten dienstorientierte Architekturen, in denen Softwarekomponenten in Form von Diensten zur Verfügung stehen. Ein Dienst bietet über seine Schnittstelle lokalen wie entfernten Applikationen einen Zugang zu seiner Funktionalität. Wir betrachten im Folgenden nur solche dienstorientierte Architekturen, in denen Dienste zur Laufzeit dynamisch entdeckt, gebunden, komponiert, verhandelt und adaptiert werden können. Eine Applikation kann mit unterschiedlichen Diensten arbeiten, wenn beispielsweise Dienste ausfallen oder ein neuer Dienst die Anforderungen der Applikation besser erfüllt. Eine unserer Grundvoraussetzungen lautet somit, dass sowohl das Dienstangebot als auch die Nachfrageseite variabel sind. Dienstorientierte Architekturen haben besonderes Gewicht in der Implementierung von Geschäftsprozessen. Im Rahmen des Paradigmas Enterprise Integration Architecture werden einzelne Arbeitsschritte als Dienste implementiert und ein Geschäftsprozess als Workflow von Diensten ausgeführt. Eine solche Dienstkomposition wird auch Orchestration genannt. Insbesondere für die so genannte B2B-Integration (Business-to-Business) sind Dienste das probate Mittel, um die Kommunikation über die Unternehmensgrenzen hinaus zu unterstützen. Dienste werden hier in der Regel als Web Services realisiert, welche vermöge BPEL4WS orchestriert werden. Der XML-basierte Nachrichtenverkehr und das http-Protokoll sorgen für eine Verträglichkeit zwischen heterogenen Systemen und eine Transparenz des Nachrichtenverkehrs. Anbieter dieser Dienste versprechen sich einen hohen Nutzen durch ihre öffentlichen Dienste. Zum einen hofft man auf eine vermehrte Einbindung ihrer Dienste in Softwareprozesse. Zum anderen setzt man auf das Entwickeln neuer Software auf Basis ihrer Dienste. In der Zukunft werden hunderte solcher Dienste verfügbar sein und es wird schwer für den Entwickler passende Dienstangebote zu finden. Das Projekt ADDO hat in diesem Umfeld wichtige Ergebnisse erzielt. Im Laufe des Projektes wurde erreicht, dass der Einsatz semantischer Spezifikationen es ermöglicht, Dienste sowohl im Hinblick auf ihre funktionalen als auch ihre nicht-funktionalen Eigenschaften, insbesondere die Dienstgüte, automatisch zu sichten und an Dienstaggregate zu binden [15]. Dazu wurden Ontologie-Schemata [10, 16], Abgleichalgorithmen [16, 9] und Werkzeuge entwickelt und als Framework implementiert [16]. Der in diesem Rahmen entwickelte Abgleichalgorithmus für Dienstgüte beherrscht die automatische Aushandlung von Verträgen für die Dienstnutzung, um etwa kostenpflichtige Dienste zur Dienstnutzung einzubinden. ADDO liefert einen Ansatz, Schablonen für Dienstaggregate in BPEL4WS zu erstellen, die zur Laufzeit automatisch verwaltet werden. Das Vorgehen konnte seine Effektivität beim internationalen Wettbewerb Web Service Challenge 2006 in San Francisco unter Beweis stellen: Der für ADDO entwickelte Algorithmus zur semantischen Dienstkomposition erreichte den ersten Platz. Der Algorithmus erlaubt es, unter einer sehr großenMenge angebotener Dienste eine geeignete Auswahl zu treffen, diese Dienste zu Dienstaggregaten zusammenzufassen und damit die Funktionalität eines vorgegebenen gesuchten Dienstes zu leisten. Weitere Ergebnisse des Projektes ADDO wurden auf internationalen Workshops und Konferenzen veröffentlicht. [12, 11]
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
Concept lattices are used in formal concept analysis to represent data conceptually so that the original data are still recognizable. Their line diagrams should reflect the semantical relationships within the data. Up to now, no satisfactory automatic drawing programs for this task exist. The geometrical heuristic is the most successful tool for drawing concept lattices manually. It ueses a geometric representation as intermediate step between the list of upper covers and the line diagram of the lattice.
Resumo:
Software Defined Radio (SDR) hardware platforms use parallel architectures. Current concepts of developing applications (such as WLAN) for these platforms are complex, because developers describe an application with hardware-specifics that are relevant to parallelism such as mapping and scheduling. To reduce this complexity, we have developed a new programming approach for SDR applications, called Virtual Radio Engine (VRE). VRE defines a language for describing applications, and a tool chain that consists of a compiler kernel and other tools (such as a code generator) to generate executables. The thesis presents this concept, as well as describes the language and the compiler kernel that have been developed by the author. The language is hardware-independent, i.e., developers describe tasks and dependencies between them. The compiler kernel performs automatic parallelization, i.e., it is capable of transforming a hardware-independent program into a hardware-specific program by solving hardware-specifics, in particular mapping, scheduling and synchronizations. Thus, VRE simplifies programming tasks as developers do not solve hardware-specifics manually.
Resumo:
A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).
Resumo:
While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.