3 resultados para Artillery, Field and mountain

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates the systematics and evolution of the Neotropical genus Deuterocohnia Mez (Bromeliaceae). It provides a comprehensive taxonomic revision as well as phylogenetic analyses based on chloroplast and nuclear DNA sequences and presents a hypothesis on the evolution of the genus. A broad morphological, anatomical, biogeographical and ecological overview of the genus is given in the first part of the study. For morphological character assessment more than 700 herbarium specimens from 39 herbaria as well as living plant material in the field and in the living collections of botanical gardens were carefully examined. The arid habitats, in which the species of Deuterocohnia grow, are reflected by the morphological and anatomical characters of the species. Important characters for species delimitation were identified, like the length of the inflorescence, the branching order, the density of flowers on partial inflorescences, the relation of the length of the primary bracts to that of the partial inflorescence, the sizes of floral bracts, sepals and petals, flower colour, the presence or absence of a pedicel, the curvature of the stamina and the petals during anthesis. After scrutinizing the nomenclatural history of the taxa belonging to Deuterocohnia – including the 1992 syonymized genus Abromeitiella – 17 species, 4 subspecies and 4 varieties are accepted in the present revision. Taxonomic changes were made in the following cases: (I) New combinations: A. abstrusa (A. Cast.) N. Schütz is re-established – as defined by Castellanos (1931) – and transfered to D. abstrusa; D. brevifolia (Griseb.) M.A. Spencer & L.B. Sm. includes accessions of the former D. lorentziana (Mez) M.A. Spencer & L.B. Sm., which are not assigned to D. abstrusa; D. bracteosa W. Till is synonymized to D. strobilifera Mez; D. meziana Kuntze ex Mez var. carmineo-viridiflora Rauh is classified as a subspecies of D. meziana (ssp. carmineo-viridiflora (Rauh) N. Schütz); D. pedicellata W. Till is classified as a subspecies of D. meziana (ssp. pedicellata (W. Till) N. Schütz); D. scapigera (Rauh & L. Hrom.) M.A. Spencer & L.B. Sm ssp. sanctae-crucis R. Vásquez & Ibisch is classified as a species (D. sanctae-crucis (R. Vásquez & Ibisch) N. Schütz); (II) New taxa: a new subspecies of D. meziana Kuntze ex Mez is established; a new variety of D. scapigera is established; (the new taxa will be validly published elsewhere); (III) New type: an epitype for D. longipetala was chosen. All other species were kept according to Spencer and Smith (1992) or – in the case of more recently described species – according to the protologue. Beside the nomenclatural notes and the detailed descriptions, information on distribution, habitat and ecology, etymology and taxonomic delimitation is provided for the genus and for each of its species. An key was constructed for the identification of currently accepted species, subspecies and varieties. The key is based on easily detectable morphological characters. The former synonymization of the genus Abromeitiella into Deuterocohnia (Spencer and Smith 1992) is re-evalutated in the present study. Morphological as well as molecular investigations revealed Deuterocohnia incl. Abromeitiella as being monophyletic, with some indications that a monophyletic Abromeitiella lineage arose from within Deuterocohnia. Thus the union of both genera is confirmed. The second part of the present thesis describes and discusses the molecular phylogenies and networks. Molecular analyses of three chloroplast intergenic spacers (rpl32-trnL, rps16-trnK, trnS-ycf3) were conducted with a sample set of 119 taxa. This set included 103 Deuterocohnia accessions from all 17 described species of the genus and 16 outgroup taxa from the remainder of Pitcairnioideae s.str. (Dyckia (8 sp.), Encholirium (2 sp.), Fosterella (4 sp.) and Pitcairnia (2 sp.)). With its high sampling density, the present investigation by far represents the most comprehensive molecular study of Deuterocohnia up till now. All data sets were analyzed separately as well as in combination, and various optimality criteria for phylogenetic tree construction were applied (Maximum Parsimony, Maximum Likelihood, Bayesian inferences and the distance method Neighbour Joining). Congruent topologies were generally obtained with different algorithms and optimality criteria, but individual clades received different degrees of statistical support in some analyses. The rps16-trnK locus was the most informative among the three spacer regions examined. The results of the chloroplast DNA analyses revealed a highly supported paraphyly of Deuterocohnia. Thus, the cpDNA trees divide the genus into two subclades (A and B), of which Deuterocohnia subclade B is sister to the included Dyckia and Encholirium accessions, and both together are sister to Deuterocohnia subclade A. To further examine the relationship between Deuterocohnia and Dyckia/Encholirium at the generic level, two nuclear low copy markers (PRK exon2-5 and PHYC exon1) were analysed with a reduced taxon set. This set included 22 Deuterocohnia accessions (including members of both cpDNA subclades), 2 Dyckia, 2 Encholirium and 2 Fosterella species. Phylogenetic trees were constructed as described above, and for comparison the same reduced taxon set was also analysed at the three cpDNA data loci. In contrast to the cpDNA results, the nuclear DNA data strongly supported the monophyly of Deuterocohnia, which takes a sister position to a clade of Dyckia and Encholirium samples. As morphology as well as nuclear DNA data generated in the present study and in a former AFLP analysis (Horres 2003) all corroborate the monophyly of Deuterocohnia, the apparent paraphyly displayed in cpDNA analyses is interpreted to be the consequence of a chloroplast capture event. This involves the introgression of the chloroplast genome from the common ancestor of the Dyckia/ Encholirium lineage into the ancestor of Deuterocohnia subclade B species. The chloroplast haplotypes are not species-specific in Deuterocohnia. Thus, one haplotype was sometimes shared by several species, where the same species may harbour different haplotypes. The arrangement of haplotypes followed geographical patterns rather than taxonomic boundaries, which may indicate some residual gene flow among populations from different Deuteroccohnia species. Phenotypic species coherence on the background of ongoing gene flow may then be maintained by sets of co-adapted alleles, as was suggested by the porous genome concept (Wu 2001, Palma-Silva et al. 2011). The results of the present study suggest the following scenario for the evolution of Deuterocohnia and its species. Deuterocohnia longipetala may be envisaged as a representative of the ancestral state within the genus. This is supported by (1) the wide distribution of this species; (2) the overlap in distribution area with species of Dyckia; (3) the laxly flowered inflorescences, which are also typical for Dyckia; (4) the yellow petals with a greenish tip, present in most other Deuterocohnia species. The following six extant lineages within Deuterocohnia might have independently been derived from this ancestral state with a few changes each: (I) D. meziana, D. brevispicata and D. seramisiana (Bolivia, lowland to montane areas, mostly reddish-greenish coloured, very laxly to very densely flowered); (II) D. strobilifera (Bolivia, high Andean mountains, yellow flowers, densely flowered); (III) D. glandulosa (Bolivia, montane areas, yellow-greenish flowers, densely flowered); (IV) D. haumanii, D. schreiteri, D. digitata, and D. chrysantha (Argentina, Chile, E Andean mountains and Atacama desert, yellow-greenish flowers, densely flowered); (V) D. recurvipetala (Argentina, foothills of the Andes, recurved yellow flowers, laxly flowered); (VI) D. gableana, D. scapigera, D. sanctae-crucis, D. abstrusa, D. brevifolia, D. lotteae (former Abromeitiella species, Bolivia, Argentina, higher Andean mountains, greenish-yellow flowers, inflorescence usually simple). Originating from the lower montane Andean regions, at least four lineages of the genus (I, II, IV, VI) adapted in part to higher altitudes by developing densely flowered partial inflorescences, shorter flowers and – in at least three lineages (II, IV, VI) – smaller rosettes, whereas species spreading into the lowlands (I, V) developed larger plants, laxly flowered, amply branched inflorescences and in part larger flowers (I).