3 resultados para Art in literature.
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Unternehmen konkurrieren in einem globalen Wettbewerb um den Transfer neuer Technologien in erfolgreiche Geschäftsmodelle. Aus diesem Grund stehen sie zunehmend der Herausforderung gegenüber, technologische Potenziale frühzeitig zu identifizieren, zu bewerten und Strategien für das Erschließen dieser Potenziale zu entwickeln. Dies ist zentraler Gegenstand der Vorausschau und Planung neuer Technologiepfade. In der vorliegenden Arbeit wird gemeinsam mit vier Unternehmen ein Leitfaden für die Strategiefindung, Entwicklung und Kommerzialisierung neu aufkommender Technologien entwickelt und angewendet. Den Ausgangspunkt der Arbeit bildet eine systematische Aufarbeitung des Forschungsstandes der Vorausschau und Planung neuer Technologien. Anschließend wird ein Beschreibungsmodell der Entstehung neuer Technologiepfade in technologiebasierten Innovationssystemen entwickelt. Auf Basis dieses Modells werden unterschiedliche Kategorien von Einflussfaktoren definiert, die als Analyserahmen für die neu entstehende Technologie dienen. Auf Basis der in der Literatur dokumentierten Abläufe, Teamstrukturen und Methoden (z.B. Roadmaps, Szenarien, Datenbankanalysen) wird ein sechsstufiger Ansatz für die Durchführung der Vorausschau und Planung neuer Technologiepfade konzipiert. Dieser Ansatz wird in vier Firmen für die Vorausschau und Planung neuer Technologien angewendet. Die untersuchten Technologien lassen sich den Feldern Biotechnologie, Nanotechnologie, Umwelttechnologie und Sensorik zuordnen. Zentrales Ergebnis der Arbeit ist ein entsprechend der Erfahrungen in den Unternehmen angepasster Ansatz für die Vorausschau und Planung neuer Technologiepfade. Dieser Ansatz ist in Abhängigkeit von Unternehmens- und Technologiecharakteristika für die weitere Anwendung konkretisiert. Dabei finden die zu beteiligenden Organisationseinheiten, zu betrachtende Einflussfaktoren sowie anwendbare Methoden besondere Berücksichtigung. Die Arbeit richtet sich an Personen in Führungspositionen im Bereich des strategischen Technologiemanagements sowie der Forschung und Entwicklung in Unternehmen, die Strategien für neu aufkommende Technologien entwickeln. Weiterhin sind die Ergebnisse der Arbeit für Wissenschaftler auf dem Gebiet der Methoden zur Vorausschau und Strategieentwicklung für neue Technologien von Interesse.
Resumo:
Die Kernthese dieser Arbeit ist eine Leerstelle. Ihre Formulierung beruht auf einer Beobachtung, wie sie von William Gibson stammen könnte: kulturell avantgardistische Gruppen der Gesellschaft internalisieren für ihre technologisch gestützten Praktiken futuristische Phantasmen geschichtlicher Vorläufer, die in Literatur und Mediengeschichte detektivisch aufspürbar sind. Werden diese Verinnerlichungen in aktuelle Fantasien umgewandelt, entsteht eine hybride Mischung vielfältigster Beschäftigungen, Reflexionen und Entwürfe von Technokultur. Bringt man diese Kopplungen auf das Jahr 3000, die nächste epochale zukünftige Zäsur, wird die Absurdität des Projekts, Technokultur überhaupt zu thematisieren deutlich. Technokultur ist im dynamischen Wandel sozio-ikonografisch untersuchbar, wird aber durch Unschärferelation zum object trouvé und Triebmoment für eine in es selbst hinein assimilierbare Analyse. Der daraus folgenden Vermessenheit kann durch instrumentelle Serendipity begegnet werden, die hier nicht Effekt wäre, stattdessen als Methode Verwendung findet: Finden statt Suchen. Das verhältnismäßig neue Schreib/Lese-Medium Hypertext bietet sich dafür als geradezu prädestiniert an. Hypertext ist prinzipiell unabgeschlossen, er folgt hier Arbeitsprinzipien wie sie seit den frühen 1990ern in Online-Tagebüchern und seit den frühen 2000er Jahren in Weblogs (World Wide Web Logbooks) auszumachen sind: Notizen, Found Text (analog zu Found Footage), Zitate, Fragmente, die kurze Form, kurz: wissenschaftliche Alltagstextproduktion wird nach Ordnungskriterien a-systematisiert und verwoben - weniger archiviert denn gesammelt. Eine Art Second Hand Theorie entsteht.
Resumo:
Diese Arbeit thematisiert die optimierte Darstellung von organischen Mikro- und Nanodrähten, Untersuchungen bezüglich deren molekularen Aufbaus und die anwendungsorientierte Charakterisierung der Eigenschaften. Mikro- und Nanodrähte haben in den letzten Jahren im Zuge der Miniaturisierung von Technologien an weitreichendem Interesse gewonnen. Solche eindimensionalen Strukturen, deren Durchmesser im Bereich weniger zehn Nanometer bis zu einigen wenigen Mikrometern liegt, sind Gegenstand intensiver Forschung. Neben anorganischen Ausgangssubstanzen zur Erzeugung von Mikro- und Nanodrähten haben organische Funktionsmaterialien aufgrund ihrer einfachen und kostengünstigen Verarbeitbarkeit sowie ihrer interessanten elektrischen und optischen Eigenschaften an Bedeutung gewonnen. Eine wichtige Materialklasse ist in diesem Zusammenhang die Verbindungsklasse der n-halbleitenden Perylentetracarbonsäurediimide (kurz Perylendiimide). Dem erfolgreichen Einsatz von eindimensionalen Strukturen als miniaturisierte Bausteine geht die optimierte und kontrollierte Herstellung voraus. Im Rahmen der Doktorarbeit wurde die neue Methode der Drahterzeugung „Trocknen unter Lösungsmittelatmosphäre“ entwickelt, welche auf Selbstassemblierung der Substanzmoleküle aus Lösung basiert und unter dem Einfluss von Lösungsmitteldampf direkt auf einem vorgegebenen Substrat stattfindet. Im Gegensatz zu literaturbekannten Methoden ist kein Transfer der Drähte aus einem Reaktionsgefäß nötig und damit verbundene Beschädigungen der Strukturen werden vermieden. Während herkömmliche Methoden in einer unkontrolliert großen Menge von ineinander verwundenen Drähten resultieren, erlaubt die substratbasierte Technik die Bildung voneinander separierter Einzelfasern und somit beispielsweise den Einsatz in Einzelstrukturbauteilen. Die erhaltenen Fasern sind morphologisch sehr gleichmäßig und weisen bei Längen von bis zu 5 mm bemerkenswert hohe Aspektverhältnisse von über 10000 auf. Darüber hinaus kann durch das direkte Drahtwachstum auf dem Substrat über den Einsatz von vorstrukturierten Oberflächen und Wachstumsmasken gerichtetes, lokal beschränktes Drahtwachstum erzielt werden und damit aktive Kontrolle auf Richtung und Wachstumsbereich der makroskopisch nicht handhabbaren Objekte ausgeübt werden. Um das Drahtwachstum auch hinsichtlich der Materialauswahl, d. h. der eingesetzten Ausgangsmaterialien zur Drahterzeugung und somit der resultierenden Eigenschaften der gebildeten Strukturen aktiv kontrollieren zu können, wird der Einfluss unterschiedlicher Parameter auf die Morphologie der Selbstassemblierungsprodukte am Beispiel unterschiedlicher Derivate betrachtet. So stellt sich zum einen die Art der eingesetzten Lösungsmittel in flüssiger und gasförmiger Phase beim Trocknen unter Lösungsmittelatmosphäre als wichtiger Faktor heraus. Beide Lösungsmittel dienen als Interaktionspartner für die Moleküle des funktionellen Drahtmaterials im Selbstassemblierungsprozess. Spezifische Wechselwirkungen zwischen Perylendiimid-Molekülen untereinander und mit Lösungsmittel-Molekülen bestimmen dabei die äußere Form der erhaltenen Strukturen. Ein weiterer wichtiger Faktor ist die Molekülstruktur des verwendeten funktionellen Perylendiimids. Es wird der Einfluss einer Bay-Substitution bzw. einer unsymmetrischen Imid-Substitution auf die Morphologie der erhaltenen Strukturen herausgestellt. Für das detaillierte Verständnis des Zusammenhanges zwischen Molekülstruktur und nötigen Wachstumsbedingungen für die Bildung von eindimensionalen Strukturen zum einen, aber auch die resultierenden Eigenschaften der erhaltenen Aggregationsprodukte zum anderen, sind Informationen über den molekularen Aufbau von großer Bedeutung. Im Rahmen der Doktorarbeit konnte ein molekular hoch geordneter, kristalliner Aufbau der Drähte nachgewiesen werden. Durch Kombination unterschiedlicher Messmethoden ist es gelungen, die molekulare Anordnung in Strukturen aus einem Spirobifluoren-substituierten Derivat in Form einer verkippten Molekülstapelung entlang der Drahtlängsrichtung zu bestimmen. Um mögliche Anwendungsbereiche der erzeugten Drähte aufzuzeigen, wurden diese hinsichtlich ihrer elektrischen und optischen Eigenschaften analysiert. Neben dem potentiellen Einsatz im Bereich von Filteranwendungen und Sensoren, sind vor allem die halbleitenden und optisch wellenleitenden Eigenschaften hervorzuheben. Es konnten organische Transistoren auf der Basis von Einzeldrähten mit im Vergleich zu Dünnschichtbauteilen erhöhten Ladungsträgerbeweglichkeiten präpariert werden. Darüber hinaus wurden die erzeugten eindimensionalen Strukturen als aktive optische Wellenleiter charakterisiert. Die im Rahmen der Dissertation erarbeiteten Kenntnisse bezüglich der Bildung von eindimensionalen Strukturen durch Selbstassemblierung, des Drahtaufbaus und erster anwendungsorientierter Charakterisierung stellen eine Basis zur Weiterentwicklung solcher miniaturisierter Bausteine für unterschiedlichste Anwendungen dar. Die neu entwickelte Methode des Trocknens unter Lösungsmittelatmosphäre ist nicht auf den Einsatz von Perylendiimiden beschränkt, sondern kann auf andere Substanzklassen ausgeweitet werden. Dies eröffnet breite Möglichkeiten der Materialauswahl und somit der Einsatzmöglichkeiten der erhaltenen Strukturen.