8 resultados para Antarctic Thresholds - Ecosystem Resilience and Adaptation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investing in global environmental and adaptation benefits in the context of agriculture and food security initiatives can play an important role in promoting sustainable intensification. This is a priority for the Global Environment Facility (GEF), created in 1992 with a mandate to serve as financial mechanism of several multilateral environmental agreements. To demonstrate the nature and extent of GEF financing, we conducted an assessment of the entire portfolio over a period of two decades (1991–2011) to identify projects with direct links to agriculture and food security. A cohort of 192 projects and programs were identified and used as a basis for analyzing trends in GEF financing. The projects and programs together accounted for a total GEF financing of US$1,086.8 million, and attracted an additional US$6,343.5 million from other sources. The value-added of GEF financing for ecosystem services and resilience in production systems was demonstrated through a diversity of interventions in the projects and programs that utilized US$810.6 million of the total financing. The interventions fall into the following four main categories in accordance with priorities of the GEF: sustainable land management (US$179.3 million), management of agrobiodiversity (US$113.4 million), sustainable fisheries and water resource management (US$379.8 million), and climate change adaptation (US$138.1 million). By aligning GEF priorities with global aspirations for sustainable intensification of production systems, the study shows that it is possible to help developing countries tackle food insecurity while generating global environmental benefits for a healthy and resilient planet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the strategies and techniques researched and implemented by the International Union for Conservation of Nature (IUCN) in villages in the vicinity of Doi Mae Salong in Chiang Rai Province, Thailand. The strategies revolve around the paradigm linking poverty alleviation, conservation and landscape restoration. IUCN and its partners specifically researched and implemented schemes directed toward diversification of the household economy through alternative and sustainable intensified agriculture techniques based on balancing conservation and livelihood objectives. The projects aimed to reduce poverty and build the resilience of smallholders through decentralised governance arrangements including land use planning schemes and stakeholder negotiation. Considering the agro-ecological system on a catchment-wide scale enhances the conceptual understanding of each component, collectively forming a landscape matrix with requisite benefits for biodiversity, smallholder livelihoods and ecosystem services. In particular, the role of enhancing ecosystem services and functions in building socio-ecological resilience to vulnerabilities such as climate and economic variability is paramount in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the effects of environmental variables on traditional and alternative agroecosystems in three Ejidos (communal lands) in the Chiapas rainforest in Mexico. The tests occurred within two seasonal agricultural cycles. In spring-summer, experiments were performed with the traditional slash, fell and burn (S-F-B) system, no-burn systems and rotating systems with Mucuna deeringiana Bort., and in the autumn-winter agricultural cycle, three no-burn systems were compared to evaluate the effect of alternative sowing with corn (no-burn and topological modification of sowing). The results show a high floristic diversity in the study area (S_S = 4 - 23%), with no significant differences among the systems evaluated. In the first cycle, the analysis of the agronomical variables of the corn indicated better properties in the fallowing systems, with an average yield of 1950 kg ha^‑1, but there was variation related to the number of years left fallow. In the second cycle, the yields were positive for the alternative technology (average yield 3100 kg ha^‑1). The traditional S-F-B systems had reduced pests and increased organic matter and soil phosphorous content. These results are the consequence of fallow periods and adaptation to the environment; thus, this practice in the Chiapas rainforest constitutes an ethnocultural reality, which is unlikely to change in the near future if the agrosystems are managed based on historical principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change and variability in sub-Saharan West Africa is expected to have negative consequences for crop and livestock farming due to the strong dependence of these sectors on rainfall and natural resources, and the low adaptive capacity of crops farmers, agro-pastoralist and pastoralists in the region. The objective of this PhD research was to investigate the anticipated impacts of expected future climate change and variability on nutrition and grazing management of livestock in the prevailing extensive agro-pastoral and pastoral systems of the Sahelian and Sudanian zones of Burkina Faso. To achieve this, three studies were undertaken in selected village territories (100 km² each) in the southern Sahelian (Taffogo), northern Sudanian (Nobere, Safane) and southern Sudanian (Sokouraba) zone of the country during 2009 and 2010. The choice of two villages in the northern Sudanian zone was guided by the dichotomy between intense agricultural land use and high population density near Safane, and lower agricultural land use in the tampon zone between the village of Nobere and the National Park Kaboré Tambi of Pô. Using global positioning and geographical information systems tools, the spatio-temporal variation in the use of grazing areas by cattle, sheep and goats, and in their foraging behaviour in the four villages was assessed by monitoring three herds each per species during a one-year cycle (Chapter 2). Maximum itinerary lengths (km/d) were observed in the hot dry season (March-May); they were longer for sheep (18.8) and cattle (17.4) than for goats (10.5, p<0.05). Daily total grazing time spent on pasture ranged from 6 - 11 h with cattle staying longer on pasture than small ruminants (p<0.05). Feeding time accounted for 52% - 72% of daily time on pasture, irrespective of species. Herds spent longer time on pasture and walked farther distances in the southern Sahelian than the two Sudanian zones (p<0.01), while daily feeding time was longer in the southern Sudanian than in the other two zones (p>0.05). Proportional time spent resting decreased from the rainy (June - October) to the cool (November - February) and hot dry season (p<0.05), while in parallel the proportion of walking time increased. Feeding time of all species was to a significantly high proportion spent on wooded land (tree crown cover 5-10%, or shrub cover >10%) in the southern Sahelian zone, and on forest land (tree crown cover >10%) in the two Sudanian zones, irrespective of season. It is concluded that with the expansion of cropland in the whole region, remaining islands of wooded land, including also fields fallowed for three or more years with their considerable shrub cover, are particularly valuable pasturing areas for ruminant stock. Measures must be taken that counteract the shrinking of wooded land and forests across the whole region, including also active protection and (re)establishment of drought-tolerant fodder trees. Observation of the selection behaviour of the above herds of cattle and small ruminant as far as browse species were concerned, and interviews with 75 of Fulani livestock keepers on use of browse as feed by their ruminant stock and as remedies for animal disease treatment was undertaken (Chapter 3) in order to evaluate the consequence of climate change for the contribution of browse to livestock nutrition and animal health in the extensive grazing-based livestock systems. The results indicated that grazing cattle and small ruminants do make considerable use of browse species on pasture across the studied agro-ecological zones. Goats spent more time (p<0.01) feeding on browse species than sheep and cattle, which spent a low to moderate proportion of their feeding time on browsing in any of the study sites. As far as the agro-ecological zones were concerned, the contribution of browse species to livestock nutrition was more important in the southern Sahelian and northern Sudanian zone than the southern Sudanian zone, and this contribution is higher during the cold and hot dry season than during the rainy season. A total of 75 browse species were selected on pasture year around, whereby cattle strongly preferred Afzelia africana, Pterocarpus erinaceus and Piliostigma sp., while sheep and goats primarily fed on Balanites aegyptiaca, Ziziphus mauritiana and Acacia sp. Crude protein concentration (in DM) of pods or fruits of the most important browse species selected by goats, sheep and cattle ranged from 7% to 13% for pods, and from 10% to 18% for foliage. The concentration of digestible organic matter of preferred browse species mostly ranged from 40% to 60%, and the concentrations of total phenols, condensed tannins and acid detergent lignin were low. Linear regression analyses showed that browse preference on pasture is strongly related to its contents (% of DM) of CP, ADF, NDF and OM digestibility. Interviewed livestock keepers reported that browse species are increasingly use by their grazing animals, while for animal health care use of tree- and shrub-based remedies decreased over the last two decades. It is concluded that due to climate change with expected negative impact on the productivity of the herbaceous layer of communal pastures browse fodder will gain in importance for animal nutrition. Therefore re-establishment and dissemination of locally adapted browse species preferred by ruminants is needed to increase the nutritional situation of ruminant stock in the region and contribute to species diversity and soil fertility restoration in degraded pasture areas. In Chapter 4 a combination of household surveys and participatory research approaches was used in the four villages, and additionally in the village of Zogoré (southern Sahelian zone) and of Karangasso Vigué (northern Sudanian zone) to investigate pastoralists’ (n= 76) and agro-pastoralists’ (n= 83) perception of climate change, and their adaptation strategies in crop and livestock production at farm level. Across the three agro-ecological zones, the majority of the interviewees perceived an increase in maximum day temperatures and decrease of total annual rainfall over the last two decades. Perceptions of change in climate patterns were in line with meteorological data for increased temperatures while for total rainfall farmers’ views contrasted the rainfall records which showed a slight increase of precipitation. According to all interviewees climate change and variability have negative impacts on their crop and animal husbandry, and most of them already adopted some coping and adaptation strategies at farm level to secure their livelihoods and reduce negative impacts on their farming system. Although these strategies are valuable and can help crop and livestock farmers to cope with the recurrent droughts and climate variability, they are not effective against expected extreme climate events. Governmental and non-governmental organisations should develop effective policies and strategies at local, regional and national level to support farmers in their endeavours to cope with climate change phenomena; measures should be site-specific and take into account farmers’ experiences and strategies already in place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vor dem Hintergund der Integration des wissensbasierten Managementsystems Precision Farming in den Ökologischen Landbau wurde die Umsetzung bestehender sowie neu zu entwickelnder Strategien evaluiert und diskutiert. Mit Blick auf eine im Precision Farming maßgebende kosteneffiziente Ertragserfassung der im Ökologischen Landbau flächenrelevanten Leguminosen-Grasgemenge wurden in zwei weiteren Beiträgen die Schätzgüten von Ultraschall- und Spektralsensorik in singulärer und kombinierter Anwendung analysiert. Das Ziel des Precision Farming, ein angepasstes Management bezogen auf die flächeninterne Variabilität der Standorte umzusetzen, und damit einer Reduzierung von Betriebsmitteln, Energie, Arbeit und Umwelteffekten bei gleichzeitiger Effektivitätssteigerung und einer ökonomischen Optimierung zu erreichen, deckt sich mit wesentlichen Bestrebungen im Ökogischen Landbau. Es sind vorrangig Maßnahmen zur Erfassung der Variabilität von Standortfaktoren wie Geländerelief, Bodenbeprobung und scheinbare elektrische Leitfähigkeit sowie der Ertragserfassung über Mähdrescher, die direkt im Ökologischen Landbau Anwendung finden können. Dagegen sind dynamisch angepasste Applikationen zur Düngung, im Pflanzenschutz und zur Beseitigung von Unkräutern aufgrund komplexer Interaktionen und eines eher passiven Charakters dieser Maßnahmen im Ökologischen Landbau nur bei Veränderung der Applikationsmodelle und unter Einbindung weiterer dynamischer Daten umsetzbar. Beispiele hiefür sind einzubeziehende Mineralisierungsprozesse im Boden und organischem Dünger bei der Düngemengenberechnung, schwer ortsspezifisch zuzuordnende präventive Maßnamen im Pflanzenschutz sowie Einflüsse auf bodenmikrobiologische Prozesse bei Hack- oder Striegelgängen. Die indirekten Regulationsmechanismen des Ökologischen Landbaus begrenzen daher die bisher eher auf eine direkte Wirkung ausgelegten dynamisch angepassten Applikationen des konventionellen Precision Farming. Ergänzend sind innovative neue Strategien denkbar, von denen die qualitätsbezogene Ernte, der Einsatz hochsensibler Sensoren zur Früherkennung von Pflanzenkrankheiten oder die gezielte teilflächen- und naturschutzorientierte Bewirtschaftung exemplarisch in der Arbeit vorgestellt werden. Für die häufig große Flächenanteile umfassenden Leguminosen-Grasgemenge wurden für eine kostengünstige und flexibel einsetzbare Ertragserfassung die Ultraschalldistanzmessung zur Charakterisierung der Bestandeshöhe sowie verschiedene spektrale Vegetationsindices als Schätzindikatoren analysiert. Die Vegetationsindices wurden aus hyperspektralen Daten nach publizierten Gleichungen errechnet sowie als „Normalized Difference Spectral Index“ (NDSI) stufenweise aus allen möglichen Wellenlängenkombinationen ermittelt. Die Analyse erfolgte für Ultraschall und Vegetationsindices in alleiniger und in kombinierter Anwendung, um mögliche kompensatorische Effekte zu nutzen. In alleiniger Anwendung erreichte die Ultraschallbestandeshöhe durchweg bessere Schätzgüten, als alle einzelnen Vegetationsindices. Bei den letztgenannten erreichten insbesondere auf Wasserabsorptionsbanden basierende Vegetationsindices eine höhere Schätzgenauigkeit als traditionelle Rot/Infrarot-Indices. Die Kombination beider Sensorda-ten ließ eine weitere Steigerung der Schätzgüte erkennen, insbesondere bei bestandesspezifischer Kalibration. Hierbei kompensieren die Vegetationsindices Fehlschätzungen der Höhenmessung bei diskontinuierlichen Bestandesdichtenänderungen entlang des Höhengradienten, wie sie beim Ährenschieben oder durch einzelne hochwachsende Arten verursacht werden. Die Kombination der Ultraschallbestandeshöhe mit Vegetationsindices weist das Potential zur Entwicklung kostengünstiger Ertragssensoren für Leguminosen-Grasgemenge auf. Weitere Untersuchungen mit hyperspektralen Vegetationsindices anderer Berechnungstrukturen sowie die Einbindung von mehr als zwei Wellenlängen sind hinsichtlich der Entwicklung höherer Schätzgüten notwendig. Ebenso gilt es, Kalibrierungen und Validationen der Sensorkombination im artenreichen Grasland durchzuführen. Die Ertragserfassung in den Leguminosen-Grasgemengen stellt einen wichtigen Beitrag zur Erstellung einer Ertragshistorie in den vielfältigen Fruchtfolgen des Ökologischen Landbaus dar und ermöglicht eine verbesserte Einschätzung von Produktionspotenzialen und Defizitarealen für ein standortangepasstes Management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.