4 resultados para Analysis and digital image processing
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.
Resumo:
This study describes a combined empirical/modeling approach to assess the possible impact of climate variability on rice production in the Philippines. We collated climate data of the last two decades (1985-2002) as well as yield statistics of six provinces of the Philippines, selected along a North-South gradient. Data from the climate information system of NASA were used as input parameters of the model ORYZA2000 to determine potential yields and, in the next steps, the yield gaps defined as the difference between potential and actual yields. Both simulated and actual yields of irrigated rice varied strongly between years. However, no climate-driven trends were apparent and the variability in actual yields showed no correlation with climatic parameters. The observed variation in simulated yields was attributable to seasonal variations in climate (dry/wet season) and to climatic differences between provinces and agro-ecological zones. The actual yield variation between provinces was not related to differences in the climatic yield potential but rather to soil and management factors. The resulting yield gap was largest in remote and infrastructurally disfavored provinces (low external input use) with a high production potential (high solar radiation and day-night temperature differences). In turn, the yield gap was lowest in central provinces with good market access but with a relatively low climatic yield potential. We conclude that neither long-term trends nor the variability of the climate can explain current rice yield trends and that agroecological, seasonal, and management effects are over-riding any possible climatic variations. On the other hand the lack of a climate-driven trend in the present situation may be superseded by ongoing climate change in the future.