3 resultados para Aerial reconnaissance, American

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nondestructive determination of plant total dry matter (TDM) in the field is greatly preferable to the harvest of entire plots in areas such as the Sahel where small differences in soil properties may cause large differences in crop growth within short distances. Existing equipment to nondestructively determine TDM is either expensive or unreliable. Therefore, two radiometers for measuring reflected red and near-infrared light were designed, mounted on a single wheeled hand cart and attached to a differential Global Positioning System (GPS) to measure georeferenced variations in normalized difference vegetation index (NDVI) in pearl millet fields [Pennisetum glaucum (L.) R. Br.]. The NDVI measurements were then used to determine the distribution of crop TDM. The two versions of the radiometer could (i) send single NDVI measurements to the GPS data logger at distance intervals of 0.03 to 8.53 m set by the user, and (ii) collect NDVI values averaged across 0.5, 1, or 2 m. The average correlation between TDM of pearl millet plants in planting hills and their NDVI values was high (r^2 = 0.850) but varied slightly depending on solar irradiance when the instrument was calibrated. There also was a good correlation between NDVI, fractional vegetation cover derived from aerial photographs and millet TDM at harvest. Both versions of the rugged instrument appear to provide a rapid and reliable way of mapping plant growth at the field scale with a high spatial resolution and should therefore be widely tested with different crops and soil types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has shown that site-specific nitrogen (N) fertilizer recommendations based on an assessment of a soil’s N supply (mineral N testing) and the crop’s N status (sap nitrate analysis) can help to decrease excessive N inputs for winter wheat on the North China Plain. However, the costs to derive such recommendations based on multiple sampling of a single field hamper the use of this approach at the on-farm level. In this study low-altitude aerial true-color photographs were used to examine the relationship between image-derived reflectance values and soil–plant data in an on-station experiment. Treatments comprised a conventional N treatment (typical farmers’ practice), an optimum N treatment (N application based on soil–plant testing) and six treatments without N (one to six cropping seasons without any N fertilizer input). Normalized intensities of the red, green and blue color bands on the photographs were highly correlated with total N concentrations, SPAD readings and stem sap nitrate of winter wheat. The results indicate the potential of aerial photography to determine in combination with on site soil–plant testing the optimum N fertilizer rate for larger fields and to thereby decrease the costs for N need assessments.