7 resultados para Adaptive Learning Systems
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die vorliegende Dissertation betrachtet institutionsinterne lokale (Critical-)Incident-Reporting-Systeme ((C)IRS) als eine Möglichkeit zum Lernen aus Fehlern und unerwünschten kritischen Ereignissen (sogenannte Incidents) im Krankenhaus. Die Notwendigkeit aus Incidents zu lernen, wird im Gesundheitswesen bereits seit den 1990er Jahren verstärkt diskutiert. Insbesondere risikoreichen Organisationen, in denen Incidents fatale Konsequenzen haben können, sollten umfassende Strategien erarbeiten, die sie vor Fehlern und unerwünschten Ereignissen schützen und diese als Lernpotenzial nutzen können. Dabei können lokale IRS als ein zentraler Bestandteil des Risikomanagements und freiwillige Dokumentationssysteme im Krankenhaus ein Teil dieser Strategie sein. Sie können eine Ausgangslage für die systematische Erfassung und Auswertung von individuellen Lerngelegenheiten und den Transfer zurück in die Organisation schaffen. Hierfür sind eine lernförderliche Gestaltung, Implementierung und Einbettung lokaler IRS eine wichtige Voraussetzung. Untersuchungen über geeignete lerntheoretisch fundierte und wirkungsvolle IRS-Modelle und empirische Daten fehlen bisher im deutschsprachigen Raum. Einen entsprechenden Beitrag leistet die vorliegende Fallstudie in einem Schweizer Universitätsspital (800 Betten, 6.100 Mitarbeitende). Zu diesem Zweck wurde zuerst ein Anforderungsprofil an lernförderliche IRS aus der Literatur abgeleitet. Dieses berücksichtigt zum einen literaturbasierte Kriterien für die Gestaltung und Nutzung aus der IRS-Literatur, zum anderen die aus der Erziehungswissenschaft und Arbeitspsychologie entlehnten Gestaltungsbedingungen und Erfolgskriterien an organisationales Lernen. Das Anforderungsprofil wurde in drei empirischen Teilstudien validiert und entsprechend adaptiert. In der ersten empirischen Teilstudie erfolgte eine Standortbestimmung der lokalen IRS. Die Erhebung erfolgte in vier Kliniken mittels Dokumentenanalyse, leitfadengestützter Interviews (N=18), sieben strukturierter Gruppendiskussionen und teilnehmender Beobachtungen über einen Zeitraum von 22 Monaten. Erfolgskritische IRS-Merkmale wurden identifiziert mit dem Ziel einer praxisgerechten lernförderlichen Systemgestaltung und Umsetzung von Incident Reporting unter Betrachtung von organisationalen Rahmenbedingungen, Lernpotenzialen und Barrieren. Die zweite Teilstudie untersuchte zwei Fallbeispiele organisationalen Lernens mittels Prozessbegleitung, welche zu einem verwechslungssicheren Design bei einem Medizinalprodukt und einer verbesserten Patientenidentifikation in Zusammenhang mit Blutentnahmen führten. Für das organisationale Lernen im Spital wurden dabei Chancen, Barrieren und Gestaltungsansätze abgeleitet, wie erwünschte Veränderungen und Lernen unter Nutzung von IRS initiiert werden können und dabei ein besseres Gesundheitsresultat erreicht werden kann. Die dritte Teilstudie überprüfte, inwiefern die Nutzung und Implementierung lokaler IRS mittels einer Mitarbeitervollbefragung zur Sicherheitskultur gefördert werden kann. Hierfür wurde eine positive Interaktion, zwischen einer starken Sicherheitskultur und der Bereitschaft ein IRS zu implementieren und Incidents zu berichten, angenommen. Zum Einsatz kam eine deutschsprachige Version des Hospital Survey on Patient Safety Culture (Patientensicherheitsklimainventar) mit einem Rücklauf von 46.8% (2.897 gültige Fragebogen). In 23 von 37 Kliniken führte laut einer Nachbefragung die Sicherheitskulturbefragung zum Implementierungsentscheid. Dies konnte durch Monitoring der IRS-Nutzung bestätigt werden. Erstmals liegen mit diesen Studien empirische Daten für eine wirkungsvolle und lernförderliche Gestaltung und Umsetzung von lokalen IRS am Beispiel einer Schweizer Gesundheitsorganisation vor. Die Ergebnisse der Arbeit zeigen Chancen und Barrieren für IRS als Berichts- und Lernsysteme im Krankenhaus auf. Als Resultat unsachgemäss gestalteter und implementierter IRS konnte dabei vor allem Lernverhinderung infolge IRS aufgezeigt werden. Blinder Aktionismus und eine fehlende Priorisierung von Patientensicherheit, unzureichende Kompetenzen, Qualifikationen und Ressourcen führten dabei zur Schaffung neuer Fehlerquellen mit einer Verstärkung des Lernens erster Ordnung. Eine lernförderliche Gestaltung und Unterhaltung der lokalen IRS, eingebettet in eine klinikumsweite Qualitäts- und Patientensicherheitsstrategie, erwiesen sich hingegen als wirkungsvoll im Sinne eines organisationalen Lernens und eines kontinuierlichen Verbesserungsprozesses. Patientensicherheitskulturbefragungen erwiesen sich zudem bei entsprechender Einbettung als effektives Instrument, um die Implementierung von IRS zu fördern. Zwölf Thesen zeigen in verdichteter Form auf, welche Gestaltungsprinzipien für IRS als Instrument des organisationalen Lernens im Rahmen des klinischen Risikomanagements und zur Förderung einer starken Patientensicherheitskultur zu berücksichtigen sind. Die Erkenntnisse aus den empirischen Studien münden in ein dialogorientiertes Rahmenmodell organisationalen Lernens unter Nutzung lokaler IRS. Die Arbeit zeigt damit zum einen Möglichkeiten für ein Lernen auf den verschiedenen Ebenen der Organisation auf und weist auf die Notwendigkeit einer (Re-)Strukturierung der aktuellen IRS-Diskussion hin.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
Vorgestellt wird eine weltweit neue Methode, Schnittstellen zwischen Menschen und Maschinen für individuelle Bediener anzupassen. Durch Anwenden von Abstraktionen evolutionärer Mechanismen wie Selektion, Rekombination und Mutation in der EOGUI-Methodik (Evolutionary Optimization of Graphical User Interfaces) kann eine rechnergestützte Umsetzung der Methode für Graphische Bedienoberflächen, insbesondere für industrielle Prozesse, bereitgestellt werden. In die Evolutionäre Optimierung fließen sowohl die objektiven, d.h. messbaren Größen wie Auswahlhäufigkeiten und -zeiten, mit ein, als auch das anhand von Online-Fragebögen erfasste subjektive Empfinden der Bediener. Auf diese Weise wird die Visualisierung von Systemen den Bedürfnissen und Präferenzen einzelner Bedienern angepasst. Im Rahmen dieser Arbeit kann der Bediener aus vier Bedienoberflächen unterschiedlicher Abstraktionsgrade für den Beispielprozess MIPS ( MIschungsProzess-Simulation) die Objekte auswählen, die ihn bei der Prozessführung am besten unterstützen. Über den EOGUI-Algorithmus werden diese Objekte ausgewählt, ggf. verändert und in einer neuen, dem Bediener angepassten graphischen Bedienoberfläche zusammengefasst. Unter Verwendung des MIPS-Prozesses wurden Experimente mit der EOGUI-Methodik durchgeführt, um die Anwendbarkeit, Akzeptanz und Wirksamkeit der Methode für die Führung industrieller Prozesse zu überprüfen. Anhand der Untersuchungen kann zu großen Teilen gezeigt werden, dass die entwickelte Methodik zur Evolutionären Optimierung von Mensch-Maschine-Schnittstellen industrielle Prozessvisualisierungen tatsächlich an den einzelnen Bediener anpaßt und die Prozessführung verbessert.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.