5 resultados para Accelerated failure time Model. Correlated data. Imputation. Residuals analysis

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic DNA m5C methyltransferases (MTases) play a major role in many epigenetic regulatory processes like genomic imprinting, X-chromosome inactivation, silencing of transposons and gene expression. Members of the two DNA m5C MTase families, Dnmt1 and Dnmt3, are relatively well studied and many details of their biological functions, biochemical properties as well as interaction partners are known. In contrast, the biological functions of the highly conserved Dnmt2 family, which appear to have non-canonical dual substrate specificity, remain enigmatic despite the efforts of many researchers. The genome of the social amoeba Dictyostelium encodes Dnmt2-homolog, the DnmA, as the only DNA m5C MTase which allowed us to study Dnmt2 function in this organism without interference by the other enzymes. The dnmA gene can be easily disrupted but the knock-out clones did not show obvious phenotypes under normal lab conditions, suggesting that the function of DnmA is not vital for the organism. It appears that the dnmA gene has a low expression profile during vegetative growth and is only 5-fold upregulated during development. Fluorescence microscopy indicated that DnmA-GFP fusions were distributed between both the nucleus and cytoplasm with some enrichment in nuclei. Interestingly, the experiments showed specific dynamics of DnmA-GFP distribution during the cell cycle. The proteins colocalized with DNA in the interphase and were mainly removed from nuclei during mitosis. DnmA functions as an active DNA m5C MTase in vivo and is responsible for weak but detectable DNA methylation of several regions in the Dictyostelium genome. Nevertheless, gel retardation assays showed only slightly higher affinity of the enzyme to dsDNA compared to ssDNA and no specificity towards various sequence contexts, although weak but detectable specificity towards AT-rich sequences was observed. This could be due to intrinsic curvature of such sequences. Furthermore, DnmA did not show denaturant-resistant covalent complexes with dsDNA in vitro, although it could form covalent adducts with ssDNA. Low binding and methyltransfer activity in vitro suggest the necessity of additional factor in DnmA function. Nevertheless, no candidates could be identified in affinity purification experiments with different tagged DnmA fusions. In this respect, it should be noted that tagged DnmA fusion preparations from Dictyostelium showed somewhat higher activity in both covalent adduct formation and methylation assays than DnmA expressed in E.coli. Thus, the presence of co-purified factors cannot be excluded. The low efficiency of complex formation by the recombinant enzyme and the failure to define interacting proteins that could be required for DNA methylation in vivo, brought up the assumption that post-translational modifications could influence target recognition and enzymatic activity. Indeed, sites of phosphorylation, methylation and acetylation were identified within the target recognition domain (TRD) of DnmA by mass spectrometry. For phosphorylation, the combination of MS data and bioinformatic analysis revealed that some of the sites could well be targets for specific kinases in vivo. Preliminary 3D modeling of DnmA protein based on homology with hDNMT2 allowed us to show that several identified phosphorylation sites located on the surface of the molecule, where they would be available for kinases. The presence of modifications almost solely within the TRD domain of DnmA could potentially modulate the mode of its interaction with the target nucleic acids. DnmA was able to form denaturant-resistant covalent intermediates with several Dictyostelium tRNAs, using as a target C38 in the anticodon loop. The formation of complexes not always correlated with the data from methylation assays, and seemed to be dependent on both sequence and structure of the tRNA substrate. The pattern, previously suggested by the Helm group for optimal methyltransferase activity of hDNMT2, appeared to contribute significantly in the formation of covalent adducts but was not the only feature of the substrate required for DnmA and hDNMT2 functions. Both enzymes required Mg2+ to form covalent complexes, which indicated that the specific structure of the target tRNA was indispensable. The dynamics of covalent adduct accumulation was different for DnmA and different tRNAs. Interestingly, the profiles of covalent adduct accumulation for different tRNAs were somewhat similar for DnmA and hDNMT2 enzymes. According to the proposed catalytic mechanism for DNA m5C MTases, the observed denaturant-resistant complexes corresponded to covalent enamine intermediates. The apparent discrepancies in the data from covalent complex formation and methylation assays may be interpreted by the possibility of alternative pathways of the catalytic mechanism, leading not to methylation but to exchange or demethylation reactions. The reversibility of enamine intermediate formation should also be considered. Curiously, native gel retardation assays showed no or little difference in binding affinities of DnmA to different RNA substrates and thus the absence of specificity in the initial enzyme binding. The meaning of the tRNA methylation as well as identification of novel RNA substrates in vivo should be the aim of further experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With Chinas rapid economic development during the last decades, the national demand for livestock products has quadrupled within the last 20 years. Most of that increase in demand has been answered by subsidized industrialized production systems, while million of smallholders, which still provide the larger share of livestock products in the country, have been neglected. Fostering those systems would help China to lower its strong urban migration streams, enhance the livelihood of poorer rural population and provide environmentally save livestock products which have a good chance to satisfy customers demand for ecological food. Despite their importance, China’s smallholder livestock keepers have not yet gained appropriate attention from governmental authorities and researchers. However, profound analysis of those systems is required so that adequate support can lead to a better resource utilization and productivity in the sector. To this aim, this pilot study analyzes smallholder livestock production systems in Xishuangbanna, located in southern China. The area is bordered by Lao and Myanmar and geographically counts as tropical region. Its climate is characterized by dry and temperate winters and hot summers with monsoon rains from May to October. While the regionis plain, at about 500 m asl above sea level in the south, outliers of the Himalaya mountains reach out into the north of Xishuangbanna, where the highest peak reaches 2400 m asl. Except of one larger city, Jinghong, Xishuangbanna mainly is covered by tropical rainforest, areas under agricultural cultivation and villages. The major income is generated through inner-Chinese tourism and agricultural production. Intensive rubber plantations are distinctive for the lowland plains while small-scaled traditional farms are scattered in the mountane regions. In order to determine the current state and possible future chances of smallholder livestock production in that region, this study analyzed the current status of the smallholder livestock sector in the Naban River National Nature Reserve (NRNNR), an area which is largely representative for the whole prefecture. It covers an area of about 50square kilometer and reaches from 470 up to 2400 m asl. About 5500 habitants of different ethnic origin are situated in 24 villages. All data have been collected between October 2007 and May 2010. Three major objectives have been addressed in the study: 1. Classifying existing pig production systems and exploring respective pathways for development 2. Quantifying the performance of pig breeding systemsto identify bottlenecks for production 3. Analyzing past and current buffalo utilization to determine the chances and opportunities of buffalo keeping in the future In order to classify the different pig production s ystems, a baseline survey (n=204, stratified cluster sampling) was carried out to gain data about livestock species, numbers, management practices, cultivated plant species and field sizes as well associo-economic characteristics. Sampling included two clusters at village level (altitude, ethnic affiliation), resulting in 13 clusters of which 13-17 farms were interviewed respectively. Categorical Principal Component Analysis (CatPCA) and a two-step clustering algorithm have been applied to identify determining farm characteristics and assort recorded households into classes of livestock production types. The variables keep_sow_yes/no, TLU_pig, TLU_buffalo, size_of_corn_fields, altitude_class, size_of_tea_plantationand size_of_rubber_fieldhave been found to be major determinants for the characterization of the recorded farms. All farms have extensive or semi-intensive livestock production, pigs and buffaloes are predominant livestock species while chicken and aquaculture are available but play subordinate roles for livelihoods. All pig raisers rely on a single local breed, which is known as Small Ear Pig (SMEP) in the region. Three major production systemshave been identified: Livestock-corn based LB; 41%), rubber based (RB; 39%) and pig based (PB;20%) systems. RB farms earn high income from rubber and fatten 1.9 ±1.80 pigs per household (HH), often using purchased pig feed at markets. PB farms own similar sized rubber plantations and raise 4.7 ±2.77 pigs per HH, with fodder mainly being cultivated and collected in theforest. LB farms grow corn, rice and tea and keep 4.6 ±3.32 pigs per HH, also fed with collected and cultivated fodder. Only 29% of all pigs were marketed (LB: 20%; RB: 42%; PB: 25%), average annual mortality was 4.0 ±4.52 pigs per farm (LB: 4.6 ±3.68; RB: 1.9 ±2.14; PB: 7.1 ±10.82). Pig feed mainly consists of banana pseudo stem, corn and rice hives and is prepared in batches about two to three times per week. Such fodder might be sufficient in energy content but lacks appropriate content of protein. Pigs therefore suffer from malnutrition, which becomes most critical in the time before harvest season around October. Farmers reported high occurrences of gastrointestinal parasites in carcasses and often pig stables were wet and filled with manure. Deficits in nutritional and hygienic management are major limits for development and should be the first issues addressed to improve productivity. SME pork was found to be known and referred by local customers in town and by richer lowland farmers. However, high prices and lacking availability of SME pork at local wet-markets were the reasons which limited purchase. If major management constraints are overcome, pig breeders (PB and LB farms) could increase the share of marketed pigs for town markets and provide fatteners to richer RB farmers. RB farmers are interested in fattening pigs for home consumption but do not show any motivation for commercial pig raising. To determine the productivity of input factors in pig production, eproductive performance, feed quality and quantity as well as weight development of pigs under current management were recorded. The data collection included a progeny history survey covering 184 sows and 437 farrows, bi-weekly weighing of 114 pigs during a 16-months time-span on 21 farms (10 LB and 11 PB) as well as the daily recording of feed quality and quantity given to a defined number of pigs on the same 21 farms. Feed samples of all recorded ingredients were analyzed for their respective nutrient content. Since no literature values on thedigestibility of banana pseudo stem – which is a major ingredient of traditional pig feed in NRNNR – were found, a cross-sectional digestibility trial with 2x4 pigs has been conducted on a station in the research area. With the aid of PRY Herd Life Model, all data have been utilized to determine thesystems’ current (Status Quo = SQ) output and the productivity of the input factor “feed” in terms of saleable life weight per kg DM feed intake and monetary value of output per kg DM feed intake.Two improvement scenarios were simulated, assuming 1) that farmers adopt a culling managementthat generates the highest output per unit input (Scenario 1; SC I) and 2) that through improved feeding, selected parameters of reproduction are improved by 30% (SC II). Daily weight gain averaged 55 ± 56 g per day between day 200 and 600. The average feed energy content of traditional feed mix was 14.92 MJ ME. Age at first farrowing averaged 14.5 ± 4.34 months, subsequent inter-farrowing interval was 11.4 ± 2.73 months. Littersize was 5.8 piglets and weaning age was 4.3 ± 0.99 months. 18% of piglets died before weaning. Simulating pig production at actualstatus, it has been show that monetary returns on inputs (ROI) is negative (1:0.67), but improved (1:1.2) when culling management was optimized so that highest output is gained per unit feed input. If in addition better feeding, controlled mating and better resale prices at fixed dates were simulated, ROI further increased to 1:2.45, 1:2.69, 1:2.7 and 1:3.15 for four respective grower groups. Those findings show the potential of pork production, if basic measures of improvement are applied. Futureexploration of the environment, including climate, market-season and culture is required before implementing the recommended measures to ensure a sustainable development of a more effective and resource conserving pork production in the future. The two studies have shown that the production of local SME pigs plays an important role in traditional farms in NRNNR but basic constraints are limiting their productivity. However, relatively easy approaches are sufficient for reaching a notable improvement. Also there is a demand for more SME pork on local markets and, if basic constraints have been overcome, pig farmers could turn into more commercial producers and provide pork to local markets. By that, environmentally safe meat can be offered to sensitive consumers while farmers increase their income and lower the risk of external shocks through a more diverse income generating strategy. Buffaloes have been found to be the second important livestock species on NRNNR farms. While they have been a core resource of mixed smallholderfarms in the past, the expansion of rubber tree plantations and agricultural mechanization are reasons for decreased swamp buffalo numbers today. The third study seeks to predict future utilization of buffaloes on different farm types in NRNNR by analyzing the dynamics of its buffalo population and land use changes over time and calculating labor which is required for keeping buffaloes in view of the traction power which can be utilized for field preparation. The use of buffaloes for field work and the recent development of the egional buffalo population were analyzed through interviews with 184 farmers in 2007/2008 and discussions with 62 buffalo keepers in 2009. While pig based farms (PB; n=37) have abandoned buffalo keeping, 11% of the rubber based farms (RB; n=71) and 100% of the livestock-corn based farms (LB; n=76) kept buffaloes in 2008. Herd size was 2.5 ±1.80 (n=84) buffaloes in early 2008 and 2.2 ±1.69 (n=62) in 2009. Field work on own land was the main reason forkeeping buffaloes (87.3%), but lending work buffaloes to neighbors (79.0%) was also important. Other purposes were transport of goods (16.1%), buffalo trade (11.3%) and meat consumption(6.4%). Buffalo care required 6.2 ±3.00 working hours daily, while annual working time of abuffalo was 294 ±216.6 hours. The area ploughed with buffaloes remained constant during the past 10 years despite an expansion of land cropped per farm. Further rapid replacement of buffaloes by tractors is expected in the near future. While the work economy is drastically improved by the use of tractors, buffaloes still can provide cheap work force and serve as buffer for economic shocks on poorer farms. Especially poor farms, which lack alternative assets that could quickly be liquidizedin times of urgent need for cash, should not abandon buffalo keeping. Livestock has been found to be a major part of small mixed farms in NRNNR. The general productivity was low in both analyzed species, buffaloes and pigs. Productivity of pigs can be improved through basic adjustments in feeding, reproductive and hygienic management, and with external support pig production could further be commercialized to provide pork and weaners to local markets and fattening farms. Buffalo production is relatively time intensive, and only will be of importance in the future to very poor farms and such farms that cultivate very small terraces on steep slopes. These should be encouraged to further keep buffaloes. With such measures, livestock production in NRNNR has good chances to stay competitive in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den letzten Jahrzehnten haben sich makroskalige hydrologische Modelle als wichtige Werkzeuge etabliert um den Zustand der globalen erneuerbaren Süßwasserressourcen flächendeckend bewerten können. Sie werden heutzutage eingesetzt um eine große Bandbreite wissenschaftlicher Fragestellungen zu beantworten, insbesondere hinsichtlich der Auswirkungen anthropogener Einflüsse auf das natürliche Abflussregime oder der Auswirkungen des globalen Wandels und Klimawandels auf die Ressource Wasser. Diese Auswirkungen lassen sich durch verschiedenste wasserbezogene Kenngrößen abschätzen, wie z.B. erneuerbare (Grund-)Wasserressourcen, Hochwasserrisiko, Dürren, Wasserstress und Wasserknappheit. Die Weiterentwicklung makroskaliger hydrologischer Modelle wurde insbesondere durch stetig steigende Rechenkapazitäten begünstigt, aber auch durch die zunehmende Verfügbarkeit von Fernerkundungsdaten und abgeleiteten Datenprodukten, die genutzt werden können, um die Modelle anzutreiben und zu verbessern. Wie alle makro- bis globalskaligen Modellierungsansätze unterliegen makroskalige hydrologische Simulationen erheblichen Unsicherheiten, die (i) auf räumliche Eingabedatensätze, wie z.B. meteorologische Größen oder Landoberflächenparameter, und (ii) im Besonderen auf die (oftmals) vereinfachte Abbildung physikalischer Prozesse im Modell zurückzuführen sind. Angesichts dieser Unsicherheiten ist es unabdingbar, die tatsächliche Anwendbarkeit und Prognosefähigkeit der Modelle unter diversen klimatischen und physiographischen Bedingungen zu überprüfen. Bisher wurden die meisten Evaluierungsstudien jedoch lediglich in wenigen, großen Flusseinzugsgebieten durchgeführt oder fokussierten auf kontinentalen Wasserflüssen. Dies steht im Kontrast zu vielen Anwendungsstudien, deren Analysen und Aussagen auf simulierten Zustandsgrößen und Flüssen in deutlich feinerer räumlicher Auflösung (Gridzelle) basieren. Den Kern der Dissertation bildet eine umfangreiche Evaluierung der generellen Anwendbarkeit des globalen hydrologischen Modells WaterGAP3 für die Simulation von monatlichen Abflussregimen und Niedrig- und Hochwasserabflüssen auf Basis von mehr als 2400 Durchflussmessreihen für den Zeitraum 1958-2010. Die betrachteten Flusseinzugsgebiete repräsentieren ein breites Spektrum klimatischer und physiographischer Bedingungen, die Einzugsgebietsgröße reicht von 3000 bis zu mehreren Millionen Quadratkilometern. Die Modellevaluierung hat dabei zwei Zielsetzungen: Erstens soll die erzielte Modellgüte als Bezugswert dienen gegen den jegliche weiteren Modellverbesserungen verglichen werden können. Zweitens soll eine Methode zur diagnostischen Modellevaluierung entwickelt und getestet werden, die eindeutige Ansatzpunkte zur Modellverbesserung aufzeigen soll, falls die Modellgüte unzureichend ist. Hierzu werden komplementäre Modellgütemaße mit neun Gebietsparametern verknüpft, welche die klimatischen und physiographischen Bedingungen sowie den Grad anthropogener Beeinflussung in den einzelnen Einzugsgebieten quantifizieren. WaterGAP3 erzielt eine mittlere bis hohe Modellgüte für die Simulation von sowohl monatlichen Abflussregimen als auch Niedrig- und Hochwasserabflüssen, jedoch sind für alle betrachteten Modellgütemaße deutliche räumliche Muster erkennbar. Von den neun betrachteten Gebietseigenschaften weisen insbesondere der Ariditätsgrad und die mittlere Gebietsneigung einen starken Einfluss auf die Modellgüte auf. Das Modell tendiert zur Überschätzung des jährlichen Abflussvolumens mit steigender Aridität. Dieses Verhalten ist charakteristisch für makroskalige hydrologische Modelle und ist auf die unzureichende Abbildung von Prozessen der Abflussbildung und –konzentration in wasserlimitierten Gebieten zurückzuführen. In steilen Einzugsgebieten wird eine geringe Modellgüte hinsichtlich der Abbildung von monatlicher Abflussvariabilität und zeitlicher Dynamik festgestellt, die sich auch in der Güte der Niedrig- und Hochwassersimulation widerspiegelt. Diese Beobachtung weist auf notwendige Modellverbesserungen in Bezug auf (i) die Aufteilung des Gesamtabflusses in schnelle und verzögerte Abflusskomponente und (ii) die Berechnung der Fließgeschwindigkeit im Gerinne hin. Die im Rahmen der Dissertation entwickelte Methode zur diagnostischen Modellevaluierung durch Verknüpfung von komplementären Modellgütemaßen und Einzugsgebietseigenschaften wurde exemplarisch am Beispiel des WaterGAP3 Modells erprobt. Die Methode hat sich als effizientes Werkzeug erwiesen, um räumliche Muster in der Modellgüte zu erklären und Defizite in der Modellstruktur zu identifizieren. Die entwickelte Methode ist generell für jedes hydrologische Modell anwendbar. Sie ist jedoch insbesondere für makroskalige Modelle und multi-basin Studien relevant, da sie das Fehlen von feldspezifischen Kenntnissen und gezielten Messkampagnen, auf die üblicherweise in der Einzugsgebietsmodellierung zurückgegriffen wird, teilweise ausgleichen kann.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.