2 resultados para AMIDO-CYCLOPENTADIENYL LIGAND

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Polymerisation von α-Olefinen mit Derivaten von Gruppe-4-Metallocenen ist von großem technologischen Interesse. In den letzten Jahren hat sich bei der Suche nach metallocenalternativen Präkatalysatoren u.a. aufgrund der theoretischen Arbeiten von Ziegler gezeigt, dass Di(amido)-Chelatkomplexe mit Gruppe-4-Metallen vielversprechende Spezies für die α-Olefinpolymerisation darstellen. Im Rahmen der vorliegenden Arbeit sollten die stereoelektronischen Eigenschaften solcher Komplexe durch Arylgruppen mit sterisch anspruchsvollen Alkylsubstituenten beeinflusst werden. Weitere interessante Eigenschaften sollten durch die die Stickstoffatome verbrückende Ferroceneinheit erzielt werden, da diese als molekulares Kugellager und redoxaktive Schaltereinheit fungieren kann. Die Di(arylamino)ferrocenligandvorstufen Fe[(C5H4)NHPh]2, Fe[(C5H4)NH(2,6-C6H3Me2)]2 und Fe[(C5H4)NH(2,4,6-i-Pr3C6H2)]2 konnten durch Hartwig-Buchwald-artige Kreuzkupplung von 1,1´-Diaminoferrocen mit dem jeweiligen Arylbromid erhalten werden. Dagegen misslangen über diese Syntheseroute zahlreiche Versuche zur Synthese von Derivaten mit Substituenten in meta-Position des Arylringes. Die Darstellung der Titan- und Zirkoniumchelatkomplexe gelang durch Metathesereaktion der Di(arylamino)ferrocene mit M(NMe2)4 bzw. M(CH2Ph)4 (M = Ti, Zr), die unter Eliminierung von 2 Äquivalenten HNMe2 bzw. Toluol ablaufen. Dabei zeigte sich, dass bei sterisch anspruchsvollen Di(arylamino)ferrocenligandsystemen keine Metathesereaktion mit Ti(NMe2)4 möglich ist, was auch für analoge Reaktionen mit Ti(CH2Ph)4 zu erwarten ist. Ganz anders sind dagegen die Verhältnisse in der Zirkoniumchemie. Hier konnten durch Umsetzung von Fe[(C5H4)NH(2,4,6-i-Pr3C6H2)]2 mit Zr(NMe2)4 bzw. Zr(CH2Ph)4 die Komplexe [{Fe[C5H4(NC6H2-2,4,6-i-Pr3)]2}Zr(NMe2)2] und [{Fe[C5H4(NC6H2-2,4,6-i-Pr3)]2}Zr(CH2Ph)2] dargestellt werden. Hier findet sich eine senkrechte Anordnung der Arylringe zur Chelatringebene, die die nach Ziegler günstige Orbitalüberlappung ermöglicht, die zu einer besonders hohen katalytischen Aktivität dieser Komplexe in der Ethylenpolymerisation führen sollte. Nach üblicher Aktivierung zeigen diese Komplexe jedoch nur niedrige Aktivitäten in der Ethylenpolymerisation. Ob strukturelle Parameter für dieses Ergebnis verantwortlich sind, oder sogar Defizite im Ziegler-Modell vorliegen, sollte Gegenstand zukünftiger Untersuchungen sein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperpolarisations-aktivierte zyklonukleotid-gesteuerte (HCN) Kanäle übernehmen wichtige Funktionen in der Regulation der Herz- und Neuronalaktivität und können über einen dualen Mechanismus aus Membranhyperpolarisation und der Bindung von zyklischen Nukleotiden aktiviert werden. Ein großes Ziel der aktuellen Forschung ist die Entwicklung neuartiger Inhibitoren, die einer Fehlregulation der Kanäle entgegenwirken. In der vorliegenden Arbeit wurde die Regulation von HCN Kanälen durch zyklische Nukleotide im Detail analysiert, indem erstmals ein umfassender Screen mit 48 unterschiedlichen Zyklonukleotid-Analoga am C-terminalen Bereich (bestehend aus C-Linker und Zyklonukleotid-Bindedomäne) der drei Isoformen HCN1, HCN2 und HCN4 durchgeführt wurde. Mit Hilfe eines Fluoreszenzpolarisations-Assays wurde der Einfluss von Modifikationen in der Base, der Ribose und dem zyklischen Phosphat auf die Bindungsaffinitäten innerhalb der Zyklonukleotid-Bindedomäne untersucht. Zyklonukleotid-Analoga mit Modifikationen an der Position 7 und 8 der Base verschoben die apparenten Affinitäten im Vergleich zu den beiden natürlich vorkommenden Zyklonukleotiden cAMP und cGMP vom mikromolaren in den nanomolaren Bereich. Selektiv für die HCN4 Isoform erwiesen sich Zyklonukleotid-Analoga mit Modifikationen an der Position 6 der Base, während Modifikationen an der Position 8 der Base zu einer höheren Affinität für die HCN2 Isoform führten. Im Gegensatz zu HCN2 und HCN4 zeigte die HCN1 Isoform besonders hohe Affinitäten für Zyklonukleotid-Analoga mit Modifikationen an der Position 8 von cGMP. Eine Substitution der 2’-Hydroxylgruppe erlaubte keine Bindung an die HCN Kanäle. Mit 7-CH-cAMP konnte ein hochaffines Bindemolekül für HCN Kanäle identifiziert werden, denn der Austausch eines Stickstoffs gegen eine CH-Einheit an Position 7 der Base führte zu einer 100-fachen Steigerung der Affinität im Vergleich zu cAMP. In Übereinstimmung mit der hochaffinen Bindung konnte in kinetischen Analysen eine langsamere Dissoziationsrate für 7-CH-cAMP gemessen werden. Anhand thermodynamischer Messungen konnte ein entropisch favorisierter Bindungsmodus für 7-CH-cAMP im Vergleich zu cAMP identifiziert werden. Basierend auf einer Kristallstruktur des HCN4 CNBD:7-CH-cAMP Komplexes (2,5 Å) lässt sich erklären, dass 7-CH-cAMP durch seine höhere Lipohilie im Vergleich zu cAMP eine stärkere Präferenz für das hydrophobe Netzwerk zwischen Protein und Base besitzt. In detaillierten, vergleichenden Analysen mit den zyklonukleotidbindenden Proteinen PKA Typ I und II, hPKGIβ und Epac 1 und 2 konnte gezeigt werden, dass 7-CH-cAMP die höchsten Affinitäten für die drei Isoformen der HCN Kanäle aufwies. Somit könnte sich 7-CH-cAMP als vielversprechender Kandidat für die selektive Regulation von HCN Kanälen in vitro und in lebenden Zellen eignen und möglicherweise einen wichtigen Beitrag als krankheitsrelevanter Effektor leisten.