14 resultados para ALLOY SCATTERING

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interatomic potential of the system I - I at intermediate and small distances is calculated from atomic DFS electron densities within a statistical model. Structures in the potential, due to the electronic shells, are investigated. Calculations of the elastic differential scattering cross section for small angles and several keV impact energies show a detailed peak pattern which can be correlated to individual electronic shell interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time dependence of a heavy-ion-atom collision system is solved via a set of coupled channel equations using energy eigenvalues and matrix elements from a self-consistent field relativistic molecular many-electron Dirac-Fock-Slater calculation. Within this independent particle model we give a full many-particle interpretation by performing a small number of single-particle calculations. First results for the P(b) curves for the Ne K-hole excitation for the systems F{^8+} - Ne and F{^6+} - Ne as examples are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the measurement of the total differential scattering cross section of {Ar^+}-Ar at laboratory energies between 15 and 400 keV. Using an ab initio relativistic molecular program which calculates the interatomic potential energy curve with high accuracy, we are able to reproduce the detailed structure found in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed ab initio calculations of many particle inclusive probabilities for the scattering system 16 MeV-S{^16+} on Ar. The solution of the time-dependent DIRAC-FOCK-SLATER-equation is achieved via a set of coupled-channel equations with energy eigenvalues and matrix elements which are given by static SCF molecular many electron calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate single and double K-shell inclusive charge transfer probabilities in ion-atom collisions we solve the time-dependent Dirac equation. By expanding the timedependent wavefunction in a set of molecular basis states the time-dependent equation reduces to a set of coupled-channel equations. The energy eigenvalues and matrix elements are taken from self-consistent relativistic molecular many-electron Dirac-Fock-Slater calculations. We present many-electron inclusive probabilities for different final configurations as a function of impact parameter for single and double K-shell vacancy production in collisions of bare S on Ar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interatomic potential of the ion-atom scattering system I^N+-I at small intermediate internuclear distances is calculated for different charge states N from atomic Dirac-Focker-Slater (DFS) electron densities within a statistical model. The behaviour of the potential structures, due to ionized electronic shells, is studied by calculations of classical elastic differential scattering cross-sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical scattering cross section of two colliding nuclei at intermediate and relativistic energies is reevaluated. The influence of retardation and magnetic field effects is taken into account. Corrections due to electron screening as well as due to attractive nuclear forces are discussed. This paper represents an addendum to [l].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.