7 resultados para 270401 Plant Systematics, Taxonomy and Phylogeny

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined effects of shoot pruning (one or two stems) and inflorescence thinning (five or ten flowers per inflorescence) on greenhouse tomato yield and fruit quality were studied during the dry season (DS) and rainy season (RS) in Central Thailand. Poor fruit set, development of undersized (mostly parthenocarpic) fruits, as well as the physiological disorders blossom-end rot (BER) and fruit cracking (FC) turned out to be the prevailing causes deteriorating fruit yield and quality. The proportion of marketable fruits was less than 10% in the RS and around 65% in the DS. In both seasons, total yield was significantly increased when plants were cultivated with two stems, resulting in higher marketable yields only in the DS. While the fraction of undersized fruits was increased in both seasons when plants were grown with a secondary stem, the proportions of BER and FC were significantly reduced. Restricting the number of flowers per inflorescence invariably resulted in reduced total yield. However, in neither season did fruit load considerably affect quantity or proportion of the marketable yield fraction. Inflorescence thinning tended to promote BER and FC, an effect which was only significant for BER in the RS. In conclusion, for greenhouse tomato production under climate conditions as they are prevalent in Central Thailand, the cultivation with two stems appears to be highly recommendable whereas the measures to control fruit load tested in this study did not proof to be advisable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more widespread use of cereal/legume rotations has been suggested as a means to sustainably meet increasing food demands in sub-Saharan West Africa. Enhanced cereal yields following legumes have been attributed to chemical and biological factors such as higher levels of mineral nitrogen (Nmin) and arbuscular mycorrhizae (AM) but also to lower amounts of plant parasitic nematodes. This study was conducted under controlled conditions to examine the relative contribution of AM, plant parasitic nematodes and increased nitrogen (N) and phosphorus (P) availability to cereal/legume rotation effects on two West African soils. Sample soils were taken from field experiments at Gaya (Niger) and Fada (Burkina Faso) supporting continuous cereal and cereal/legume rotation systems and analysed for chemical and biological parameters. Average increases in cereal shoot dry matter (DM) of rotation cereals compared with continuous cereals were 490% at Gaya and 550% at Fada. Shoot P concentration of rotation millet was significantly higher than in continuous millet and P uptake in rotation cereals was on average 62.5-fold higher than in continuous cereals. Rotation rhizosphere soils also had higher pH at both sites. For the Fada soil, large increases in Bray1-P and organic P were observed in bulk and rhizosphere soils. Plant parasitic nematodes in roots of continuous cereals were 60–80-fold higher than in those of rotation cereals. In both cropping systems mycorrhizal infection rates were similar at 37 days after sowing (DAS) but at 57 DAS AM infection was 10–15% higher in rotation sorghum than in continuous sorghum. This study provides strong evidence that cereal/legume rotations can enhance P nutrition of cereals through improved soil chemical P availability and microbiologically increased P uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit stellt eine umfassende taxonomische Revision der Gattung Fosterella L.B. Sm. (Bromeliaceae) dar, die alle 31 derzeit akzeptierten Arten umfasst und einen Bestimmungsschlüssel für diese beinhaltet. Die Revision beruht auf der morphologisch-anatomischen Auswertung von Herbarmaterial (über 800 Exsikkate), Lebendpflanzen (ca. 150 Akzessionen) und eigenen vergleichenden Untersuchungen im Freiland. Die Gattung Fosterella ist seit nunmehr etlichen Jahren Forschungsgegenstand einer interdisziplinären Studie, die sowohl molekulrae, als auch anatomische, morphologische und biogeographische Untersuchungen einbezieht. Unser Interesse an der Gattung Fosterella gründet sich auf ihrer enormen ökologischen und biogeographischen Vielfalt, sie gilt als hervorragendes Modellsystem für Artbildungsmechanismen in den Anden. In den letzten Jahren wurde von verschiedenen molekularen Methoden Gebrauch gemacht, um die verwandtschaftlichen Beziehungen innerhalb der Gattung zu untersuchen, so dass mittlerweile gut aufgelöste Stammbäume vorliegen. Diese molekularen Studien, überwiegend durchgeführt von Dr. Martina Rex, wurden ergänzt durch intensive Sammelaktivitäten und eingehende taxonomische Untersuchungen im Rahmen der vorliegenden Revision. Auf diese Weise konnten die morphologische Plastizität der einzelnen Arten erfasst und schließlich ein wohlfundiertes Artkonzept vorgelegt werden. Zunächst wird ein kurzer Überblick über die Familie der Bromeliaceen als auch die Gattung Fosterella gegeben, in dem jeweils Informationen zur Verbreitung, Morphologie, Physiologie, Ökologie und Phylogenie geliefert werden. Im Anschluss an einen historischen Überblick des taxonomischen Werdegangs wird die Abgrenzung der Gattung Fosterella zu den nächstverwandten Gattungen Deuterocohnia, Dyckia und Encholirium erläutert. Die morphologischen Merkmale zur Differenzierung der Arten innerhalb der Gattung werden im Hinblick auf ihre Zuverlässigkeit und ihr Gewicht diskutiert. Der Artschlüssel basiert auf Merkmalen, die leicht auszumachen und gut zu unterscheiden sind. Bei der ausführlichen Beschreibung der Arten wird auch auf ihre jeweilige Verbreitung, Ökologie, taxonomische Abgrenzung, systematische Verwandtschaft sowie die Etymologie des Namens eingegangen. Beigefügt sind jeweils Zeichnungen, ein Foto vom Holo-/Lectotypus, Fotos von Lebendpflanzen sowie eine Verbreitungskarte. Im Rahmen der taxonomischen Arbeit wurden fünf Arten zu Synonymen reduziert: Fosterella chiquitana Ibisch, R. Vásquez & E. Gross und F. latifolia Ibisch, R. Vásquez & E. Gross wurden in die Synonymie von F. penduliflora (C.H. Wright) L.B. Sm. eingezogen; F. fuentesii Ibisch, R. Vásquez & E. Gross als Synonym zu F. albicans (Griseb.) L.B. Sm. gestellt; F. elata H. Luther in die Synonymie von F. rusbyi (Mez) L.B. Sm. verwiesen und F. nowickii Ibisch, R. Vásquez & E. Gross als Synonym zu F. weddelliana (Brongn. ex Baker) L.B. Sm. gestellt. Fosterella schidosperma (Baker) L.B. Sm. var. vestita L.B. Sm. & Read wird zum Synonym von Fosterella weberbaueri (Mez) L.B. Sm. reduziert. Sechs Arten wurden neu beschrieben: Fosterella batistana Ibisch, Leme & J. Peters; F. christophii Ibisch, R. Vásquez & J. Peters; F. elviragrossiae Ibisch, R. Vásquez & J. Peters; F. kroemeri Ibisch, R. Vásquez & J. Peters; F. nicoliana J. Peters & Ibisch und F. robertreadii Ibisch & J. Peters. Das Taxon F. gracilis (Rusby) L.B. Sm. wurde neu etabliert. Um die Evolution von einzelnen morphologischen Merkmalen zu rekonstruieren, wurden die Zustände von zehn ausgewählten Merkmalen kodiert und auf einen molekularen Stammbaum kartiert. Die folgenden Merkmalszustände wurden als ursprünglich innerhalb der Gattung ermittelt: Stammlosigkeit, ganzrandige Blattspreiten, flache Rosetten mit dem Boden aufliegenden Blättern, locker beschuppte Blattunterseiten, schildförmige Haare mit gezähntem Rand, ganzrandige Pedunkel-Brakteen, rispenförmiger Blütenstand, kahle/verkahlende Blütenstandsachsen, weiße Petalen und einfach-aufrechte Narben. Rückschlüsse bezüglich der Evolution und Ausbreitung der Gattung Fosterella werden diskutiert: Die überwiegend kleinen Verbreitungsgebiete der Arten hängen offensichtlich mit ihren fragmentierten, inselartigen Habitaten (z.B. innerandine Trockentäler) zusammen. Die Tatsache, dass die Yungas-Bergregenwälder des Departamento La Paz, Bolivia, die Region mit der größten Artenvielfalt darstellen, lässt sich mit der extrem variablen Topographie und der außerordentlich hohen Vielfalt an Habitaten dieser Region erklären. Aus folgenden Gründen erscheint es sehr wahrscheinlich, dass die Gattung Fosterella ihren Ursprung im Tiefland hat: Die Mehrheit der Arten weist einen eher mesophytischen Habitus auf und ist in mehr oder weniger humiden Habitaten zu finden. Die Gattung ist durch mehrere Arten in sehr alten Habitaten des präkambrischen Schilds im Tiefland von Zentral-Südamerika vertreten. Weiterhin betreiben, soweit bekannt, alle Fosterella Arten C3 Photosynthese, während in den Gattungen der Schwestergruppe, Deuterocohnia, Dyckia and Encholirium, CAM der verbreitete Photosyntheseweg ist. In jedem Fall ist die Besiedelung der Anden und/oder Tieflandhabitate mehrfach unabhängig voneinander geschehen, vielleicht sogar in beiden Richtungen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of continuous tillage on the distribution of soil organic matter (SOM) and aggregates have been well studied for arable soils. However, less is known about the effects of sporadic tillage on SOM and aggregate dynamics in grassland soils. The objectives of the present thesis were (I) to study the longer-term effects of sporadic tillage of grassland on organic carbon (Corg) stocks and the distribution of aggregates and SOM, (II) to investigate the combined effects of sporadic tillage and fertilization on carbon and nitrogen dynamics in grassland soils, and (III) to study the temporal dynamics of Corg stocks, aggregate distribution and microbial biomass in grassland soils. Soil samples were taken in three soil depths (0 – 10 cm; 10 – 25 cm; 25 – 40 cm) from a field trial with loamy sandy soils (Cambisols, Eutric Luvisols, Stagnosols, Anthrosols) north of Kiel, Germany. For Objective I we have sampled soil two and five years after one or two tillage operation(s). Treatments consisted of (i) permanent grassland, (ii) tillage of grassland followed by a re-establishment of grassland and (iii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The tillage in grassland led to a reduction in Corg stocks, large macroaggregates (>2000 µm) and SOM in the top 10 cm soil depth. These findings were still significant two years after tillage; however, five years after tillage no longer present. Regarding the soil profile (0 – 40 cm) no significant differences in the mentioned parameters between the tilled plots and the permanent grassland existed. A second tillage event and the insertion of one season of winter wheat did not lead to any further effects on Corg stocks as well as aggregate and SOM concentrations in comparison with a single tillage event in these grassland soils. Treatments adapted for Objective II included (i) long-term grassland and (ii) tillage of grassland followed by a re-establishment of grassland with one season of winter wheat in between. The plots were split and received either 240 kg N ha-1 year-1 in the form of cattle slurry or no cattle slurry application. The application of slurry within a period of four years had no effects on the Corg and total nitrogen stocks or the aggregate distribution, but led to a reduction of free and not physically protected SOM. However, the application of cattle slurry and the grassland renovation seems to change the plant species composition and therefore generalizations on the direct effects are not yet possible. For studying Objective III a further field trial was initiated in September 2010. Soil samples were taken six times within one year (from October 2010 to October 2011) (i) after the conversion from arable land into grassland, (ii) after the tillage of grassland followed by a re-establishment of grassland and (iii) in a permanent grassland. We found an increase in the microbial and fungal biomass after the conversion of arable land into grassland, but no effect on aggregate distribution and Corg stocks. A one-time tillage operation in grassland led to a reduction in large macroaggregates and Corg stocks in the top 10 cm soil depth with no effect on the sampled soil profile. However, we found large variations in the fungal biomass and aggregate distribution within one year in the permanent grassland, presumably caused by environmental factors. Overall, our results suggest that a single tillage operation in grassland soils markedly decreased the concentrations of Corg, larger aggregates and SOM. However, this does not result in long-lasting effects on the above mentioned parameters. The application of slurry cannot compensate the negative effects of a tillage event on aggregate concentrations or Corg stocks. However, while the Corg concentration is not subject to fluctuations within a year, there are large variations of the aggregate distribution even in a permanent grassland soil. Therefore conclusions of results from a single sampling time should be handled with care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.