4 resultados para 1530
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Diese Arbeit beschäftigt sich mit der Herstellung und Anwendungen von periodischen Goldnanopartikel-Arrays (PPAs), die mit Hilfe von Nanosphären-Lithografie hergestellt wurden. In Abhängigkeit der verwendeten Nanosphären-Größe wurden dabei entweder kleine dreieckige Nanopartikel (NP) (bei Verwendung von Nanosphären mit einem Durchmesser von 330 nm) oder große dreieckige NPD sowie leicht gestreckte NP (bei Verwendung von Nanosphären mit einem Durchmesser von 1390 nm) hergestellt. Die Charakterisierung der PPAs erfolgte mit Hilfe von Rasterkraftmikroskopie, Rasterelektronenmikroskopie und optischer Spektroskopie. Die kleinen NP besitzen ein Achsverhältnis (AV) von 2,47 (Kantenlänge des NPs: (74+/-6) nm, Höhe: (30+/-4) nm. Die großen dreieckigen NP haben ein AV von 3 (Kantenlänge des NPs:(465+/-27) nm, Höhe: (1530+/-10) nm) und die leicht gestreckten NP (die aufgrund der Ausbildung von Doppelschichten ebenfalls auf der gleichen Probe erzeugt wurden) haben eine Länge von (364+/-16)nm, eine Breite von (150+/-20) nm und eine Höhe von (150+/-10)nm. Die optischen Eigenschaften dieser NP werden durch lokalisierte Oberflächenplasmon-Polariton Resonanzen (LPPRs) dominiert, d.h. von einem eingestrahlten elektromagnetischen Feld angeregte kollektive Schwingungen der Leitungsbandelektronen. In dieser Arbeit wurden drei signifikante Herausforderungen für Plasmonik-Anwendungen bearbeitet, welche die einzigartigen optischen Eigenschaften dieser NP ausnutzen. Erstens wurden Ergebnisse der selektiven und präzisen Größenmanipulation und damit einer Kontrolle der interpartikulären Abstände von den dreieckigen Goldnanopartikel mit Hilfe von ns-gepulstem Laserlicht präsentiert. Die verwendete Methode basiert hierbei auf der Größen- und Formabhängigkeit der LPPRs der NP. Zweitens wurde die sensorischen Fähigkeiten von Gold-NP ausgenutzt, um die Bildung von molekularen Drähten auf den PPAs durch schrittweise Zugabe von unterschiedlichen molekularen Spezies zu untersuchen. Hierbei wurde die Verschiebung der LSPPR in den optischen Spektren dazu ausgenutzt, die Bildung der Nanodrähte zu überwachen. Drittens wurden Experimente vorgestellt, die sich die lokale Feldverstärkung von NP zu nutze machen, um eine hochgeordnete Nanostrukturierung von Oberflächen mittels fs-gepulstem Laserlicht zu bewerkstelligen. Dabei zeigt sich, dass neben der verwendeten Fluenz die Polarisationsrichtung des eingestrahlten Laserlichts in Bezug zu der NP-Orientierung sowie die Größe der NP äußerst wichtige Parameter für die Nanostrukturierung darstellen. So konnten z.B. Nanolöcher erzeugt werden, die bei höheren Fluenzen zu Nanogräben und Nanokanälen zusammen wuchsen. Zusammengefasst lässt sich sagen, dass die in dieser Arbeit gewonnen Ergebnisse von enormer Wichtigkeit für weitere Anwendungen sind.