5 resultados para 090608 Renewable Power and Energy Systems Engineering (excl. Solar Cells)
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Weltweit leben mehr als 2 Milliarden Menschen in ländlichen Gebieten. Als Konzept für die elektrische Energieversorgung solcher Gebiete kommen dezentrale elektrische Energieversorgungseinheiten zum Einsatz, die lokal verfügbare erneuerbare Ressourcen nutzen. Stand der Technik bilden Einheiten, die auf PV-Diesel-Batterie System basieren. Die verwendeten Versorgungsskonzepte in Hybridsystemen sind durch den Einsatz von Batterien als Energiespeicher meist wenig zuverlässig und teuer. Diese Energiespeicher sind sehr aufwendig zu überwachen und schwerig zu entsorgen. Den Schwerpunkt dieser Arbeit bildet die Entwicklung eines neuen Hybridsystems mit einem Wasserreservoir als Energiespeicher. Dieses Konzept eignet sich für Bergregionen in Entwicklungsländern wie Nepal, wo z.B. neben der solaren Strahlung kleine Flüsse in großer Anzahl vorhanden sind. Das Hybridsystem verfügt über einen Synchrongenerator, der die Netzgrößen Frequenz und Spannung vorgibt und zusätzlich unterstützen PV und Windkraftanlage die Versorgung. Die Wasserkraftanlage soll den Anteil der erneuerbaren Energienutzung erhöhen. Die Erweiterung des Systems um ein Dieselaggregat soll die Zuverlässigkeit der Versorgung erhöhen. Das Hybridsystem inkl. der Batterien wird modelliert und simuliert. Anschließend werden die Simulations- und Messergebnisse verglichen, um eine Validierung des Modells zu erreichen. Die Regelungsstruktur ist aufgrund der hohen Anzahl an Systemen und Parametern sehr komplex. Sie wird mit dem Simulationstool Matlab/Simulink nachgebildet. Das Verhalten des Gesamtsystems wird unter verschiedene Lasten und unterschiedlichen meteorologischen Gegebenheiten untersucht. Ein weiterer Schwerpunkt dieser Arbeit ist die Entwicklung einer modularen Energiemanagementeinheit, die auf Basis der erneuerbaren Energieversorgung aufgebaut wird. Dabei stellt die Netzfrequenz eine wichtige Eingangsgröße für die Regelung dar. Sie gibt über die Wirkleistungsstatik die Leistungsänderung im Netz wider. Über diese Angabe und die meteorologischen Daten kann eine optimale wirtschaftliche Aufteilung der Energieversorgung berechnet und eine zuverlässige Versorgung gewährleistet werden. Abschließend wurde die entwickelte Energiemanagementeinheit hardwaretechnisch aufgebaut, sowie Sensoren, Anzeige- und Eingabeeinheit in die Hardware integriert. Die Algorithmen werden in einer höheren Programmiersprache umgesetzt. Die Simulationen unter verschiedenen meteorologischen und netztechnischen Gegebenheiten mit dem entwickelten Model eines Hybridsystems für die elektrische Energieversorgung haben gezeigt, dass das verwendete Konzept mit einem Wasserreservoir als Energiespeicher ökologisch und ökonomisch eine geeignete Lösung für Entwicklungsländer sein kann. Die hardwaretechnische Umsetzung des entwickelten Modells einer Energiemanagementeinheit hat seine sichere Funktion bei der praktischen Anwendung in einem Hybridsystem bestätigen können.
Resumo:
Das Grünbuch 2006 der Europäischen Kommission "Eine Europäische Strategie für nachhaltige, wettbewerbsfähige und sichere Energie" unterstreicht, dass Europa in ein neues Energie-Zeitalter eingetreten ist. Die vorrangigen Ziele europäischer Energiepolitik müssen Nachhaltigkeit, Wettbewerbsfähigkeit und Versorgungssicherheit sein, wobei sie eine zusammenhängende und logische Menge von Taktiken und Maßnahmen benötigt, um diese Ziele zu erreichen. Die Strommärkte und Verbundnetze Europas bilden das Kernstück unseres Energiesystems und müssen sich weiterentwickeln, um den neuen Anforderungen zu entsprechen. Die europäischen Stromnetze haben die lebenswichtigen Verbindungen zwischen Stromproduzenten und Verbrauchern mit großem Erfolg seit vielen Jahrzehnten gesichert. Die grundlegende Struktur dieser Netze ist entwickelt worden, um die Bedürfnisse großer, überwiegend auf Kohle aufgebauten Herstellungstechnologien zu befriedigen, die sich entfernt von den Verbraucherzentren befinden. Die Energieprobleme, denen Europa jetzt gegenübersteht, ändern die Stromerzeugungslandschaft in zwei Gesichtspunkten: die Notwendigkeit für saubere Kraftwerkstechnologien verbunden mit erheblich verbesserten Wirkungsgraden auf der Verbraucherseite wird es Kunden ermöglichen, mit den Netzen viel interaktiver zu arbeiten; andererseits müssen die zukünftigen europaweiten Stromnetze allen Verbrauchern eine höchst zuverlässige, preiswerte Energiezufuhr bereitstellen, wobei sowohl die Nutzung von großen zentralisierten Kraftwerken als auch kleineren lokalen Energiequellen überall in Europa ausgeschöpft werden müssen. In diesem Zusammenhang wird darauf hingewiesen, dass die Informationen, die in dieser Arbeit dargestellt werden, auf aktuellen Fragen mit großem Einfluss auf die gegenwärtigen technischen und wirtschaftspolitischen Diskussionen basieren. Der Autor hat während der letzten Jahre viele der hier vorgestellten Schlussfolgerungen und Empfehlungen mit Vertretern der Kraftwerksindustrie, Betreibern von Stromnetzen und Versorgungsbetrieben, Forschungsgremien und den Regulierungsstellen diskutiert. Die folgenden Absätze fassen die Hauptergebnisse zusammen: Diese Arbeit definiert das neue Konzept, das auf mehr verbraucherorientierten Netzen basiert, und untersucht die Notwendigkeiten sowie die Vorteile und die Hindernisse für den Übergang auf ein mögliches neues Modell für Europa: die intelligenten Stromnetze basierend auf starker Integration erneuerbarer Quellen und lokalen Kleinkraftwerken. Das neue Modell wird als eine grundlegende Änderung dargestellt, die sich deutlich auf Netzentwurf und -steuerung auswirken wird. Sie fordert ein europäisches Stromnetz mit den folgenden Merkmalen: – Flexibel: es erfüllt die Bedürfnisse der Kunden, indem es auf Änderungen und neue Forderungen eingehen kann – Zugänglich: es gestattet den Verbindungszugang aller Netzbenutzer besonders für erneuerbare Energiequellen und lokale Stromerzeugung mit hohem Wirkungsgrad sowie ohne oder mit niedrigen Kohlendioxidemissionen – Zuverlässig: es verbessert und garantiert die Sicherheit und Qualität der Versorgung mit den Forderungen des digitalen Zeitalters mit Reaktionsmöglichkeiten gegen Gefahren und Unsicherheiten – Wirtschaftlich: es garantiert höchste Wirtschaftlichkeit durch Innovation, effizientes Energiemanagement und liefert „gleiche Ausgangsbedingungen“ für Wettbewerb und Regulierung. Es beinhaltet die neuesten Technologien, um Erfolg zu gewährleisten, während es die Flexibilität behält, sich an weitere Entwicklungen anzupassen und fordert daher ein zuversichtliches Programm für Forschung, Entwicklung und Demonstration, das einen Kurs im Hinblick auf ein Stromversorgungsnetz entwirft, welches die Bedürfnisse der Zukunft Europas befriedigt: – Netztechnologien, die die Stromübertragung verbessern und Energieverluste verringern, werden die Effizienz der Versorgung erhöhen, während neue Leistungselektronik die Versorgungsqualität verbessern wird. Es wird ein Werkzeugkasten erprobter technischer Lösungen geschaffen werden, der schnell und wirtschaftlich eingesetzt werden kann, so dass bestehende Netze Stromeinleitungen von allen Energieressourcen aufnehmen können. – Fortschritte bei Simulationsprogrammen wird die Einführung innovativer Technologien in die praktische Anwendung zum Vorteil sowohl der Kunden als auch der Versorger stark unterstützen. Sie werden das erfolgreiche Anpassen neuer und alter Ausführungen der Netzkomponenten gewährleisten, um die Funktion von Automatisierungs- und Regelungsanordnungen zu garantieren. – Harmonisierung der ordnungspolitischen und kommerziellen Rahmen in Europa, um grenzüberschreitenden Handel von sowohl Energie als auch Netzdienstleistungen zu erleichtern; damit muss eine Vielzahl von Einsatzsituationen gewährleistet werden. Gemeinsame technische Normen und Protokolle müssen eingeführt werden, um offenen Zugang zu gewährleisten und den Einsatz der Ausrüstung eines jeden Herstellers zu ermöglichen. – Entwicklungen in Nachrichtentechnik, Mess- und Handelssystemen werden auf allen Ebenen neue Möglichkeiten eröffnen, auf Grund von Signalen des Marktes frühzeitig technische und kommerzielle Wirkungsgrade zu verbessern. Es wird Unternehmen ermöglichen, innovative Dienstvereinbarungen zu benutzen, um ihre Effizienz zu verbessern und ihre Angebote an Kunden zu vergrößern. Schließlich muss betont werden, dass für einen erfolgreichen Übergang zu einem zukünftigen nachhaltigen Energiesystem alle relevanten Beteiligten involviert werden müssen.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
The nonforgetting restarting automaton is a generalization of the restarting automaton that, when executing a restart operation, changes its internal state based on the current state and the actual contents of its read/write window instead of resetting it to the initial state. Another generalization of the restarting automaton is the cooperating distributed system (CD-system) of restarting automata. Here a finite system of restarting automata works together in analyzing a given sentence, where they interact based on a given mode of operation. As it turned out, CD-systems of restarting automata of some type X working in mode =1 are just as expressive as nonforgetting restarting automata of the same type X. Further, various types of determinism have been introduced for CD-systems of restarting automata called strict determinism, global determinism, and local determinism, and it has been shown that globally deterministic CD-systems working in mode =1 correspond to deterministic nonforgetting restarting automata. Here we derive some lower bound results for some types of nonforgetting restarting automata and for some types of CD-systems of restarting automata. In this way we establish separations between the corresponding language classes, thus providing detailed technical proofs for some of the separation results announced in the literature.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.