2 resultados para (15)N resonance

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The screening correction to the coherent pair-production cross section on the oxygen molecule has been calculated using self-consistent relativistic wave functions for the one-center and two-center Coulomb potentials. It is shown that the modification of the wave function due to molecular binding and the interference between contributions from the two atoms have both sizeable effects on the screening correction. The so-obtained coherent pair-production cross section which makes up the largest part of the total atomic cross section was used to evaluate the total nuclear absorption cross section from photon attenuation measurements on liquid oxygen. The result agrees with cross sections for other nuclei if A-scaling is assumed. The molecular effect on the pair cross section amounts to 15 % of the nuclear cross section in the {\delta-resonance} region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.