63 resultados para Ultracold Atoms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.