132 resultados para Flitner, Andreas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wissensmanagement in zentralisierten Wissensbasen erfordert einen hohen Aufwand für Erstellung und Wartung, und es entspricht nicht immer den Anforderungen der Benutzer. Wir geben in diesem Kapitel einen Überblick über zwei aktuelle Ansätze, die durch kollaboratives Wissensmanagement diese Probleme lösen können. Im Peer-to-Peer-Wissensmanagement unterhalten Benutzer dezentrale Wissensbasen, die dann vernetzt werden können, um andere Benutzer eigene Inhalte nutzen zu lassen. Folksonomies versprechen, die Wissensakquisition so einfach wie möglich zu gestalten und so viele Benutzer in den Aufbau und die Pflege einer gemeinsamen Wissensbasis einzubeziehen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. The reason for their immediate success is the fact that no specific skills are needed for participating. In this paper we specify a formal model for folksonomies and briefly describe our own system BibSonomy, which allows for sharing both bookmarks and publication references in a kind of personal library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ein wichtiger Baustein des neu entdeckten World Wide Web - des "Web 2.0" - stellen Folksonomies dar. In diesen Systemen können Benutzer gemeinsam Ressourcen verwalten und mit Schlagwörtern versehen. Die dadurch entstehenden begrifflichen Strukturen stellen ein interessantes Forschungsfeld dar. Dieser Artikel untersucht Ansätze und Wege zur Entdeckung und Strukturierung von Nutzergruppen ("Communities") in Folksonomies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the number of resources on the web exceeds by far the number of documents one can track, it becomes increasingly difficult to remain up to date on ones own areas of interest. The problem becomes more severe with the increasing fraction of multimedia data, from which it is difficult to extract some conceptual description of their contents. One way to overcome this problem are social bookmark tools, which are rapidly emerging on the web. In such systems, users are setting up lightweight conceptual structures called folksonomies, and overcome thus the knowledge acquisition bottleneck. As more and more people participate in the effort, the use of a common vocabulary becomes more and more stable. We present an approach for discovering topic-specific trends within folksonomies. It is based on a differential adaptation of the PageRank algorithm to the triadic hypergraph structure of a folksonomy. The approach allows for any kind of data, as it does not rely on the internal structure of the documents. In particular, this allows to consider different data types in the same analysis step. We run experiments on a large-scale real-world snapshot of a social bookmarking system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social resource sharing systems like YouTube and del.icio.us have acquired a large number of users within the last few years. They provide rich resources for data analysis, information retrieval, and knowledge discovery applications. A first step towards this end is to gain better insights into content and structure of these systems. In this paper, we will analyse the main network characteristics of two of the systems. We consider their underlying data structures – socalled folksonomies – as tri-partite hypergraphs, and adapt classical network measures like characteristic path length and clustering coefficient to them. Subsequently, we introduce a network of tag co-occurrence and investigate some of its statistical properties, focusing on correlations in node connectivity and pointing out features that reflect emergent semantics within the folksonomy. We show that simple statistical indicators unambiguously spot non-social behavior such as spam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social resource sharing systems like YouTube and del.icio.us have acquired a large number of users within the last few years. They provide rich resources for data analysis, information retrieval, and knowledge discovery applications. A first step towards this end is to gain better insights into content and structure of these systems. In this paper, we will analyse the main network characteristics of two of these systems. We consider their underlying data structures – so-called folksonomies – as tri-partite hypergraphs, and adapt classical network measures like characteristic path length and clustering coefficient to them. Subsequently, we introduce a network of tag cooccurrence and investigate some of its statistical properties, focusing on correlations in node connectivity and pointing out features that reflect emergent semantics within the folksonomy. We show that simple statistical indicators unambiguously spot non-social behavior such as spam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, beside consistency checking, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as (labeled, directed) graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures in general currently receive high attention in the Semantic Web community, there are only very few SNA applications up to now, and virtually none for analyzing the structure of ontologies. We illustrate in this paper the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality based on Hermitian matrices, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.