57 resultados para Aproximação de Hartree-Fock
Resumo:
The chemical properties of element 111, eka-gold, are predicted through the use of the periodic table, relativistic Hartee-Fock-Slater calculations, and various qualitative theories which have established their usefulness in understanding and correlating properties of molecules. The results indicate that element 111 will be like Au(III) in its chemistry with little or no tendency to show stability in the I or II states. There is a possibility that the 111 - ion, analogous to the auride ion, will be stable.
Resumo:
The ground state (J = 0) electronic correlation energy of the 4-electron Be-sequence is calculated in the Multi-Configuration Dirac-Fock approximation for Z = 4-20. The 4 electrons were distributed over the configurations arising from the 1s, 2s, 2p, 3s, 3p and 3d orbitals. Theoretical values obtained here are in good agreement with experimental correlation energies.
Resumo:
Using the Multi-Configuration Dirac-Fock (MCDF) method we calculate with 9 configuration state functions the correlation energy as well as the total energy of the lowest J = 0 ground state of all two-electron systems from H- to Thorium (Z = 90). A comparison with experimental data, which are available only in the low Z region, shows a very good agreement.
Resumo:
Electronic factors in the volume isotope shift have been calculated in an ab initio way with the relativistic Dirac-Fock method for a number of different optical single/and two-photon transitions in Au I. The agreement with a semi-empirical method is within 10% for the resonance transition. For this one and a few other transitions the effect of core excitation has been analyzed with the Multi-configuration Dirac-Fock method as well, and it was found to reduce the electronic factor in the order of 5 %.
Resumo:
Using Doppler-free two-photon absorption spectroscopy, we have measured hyperfine splitting constants as well as isotopic level shifts of the 6s^2 np ^2 P_l/2,3/2 states in (n=7-10) in ^203 TI and ^205 TI. Calculations for hyperfine constants and electron density at the nucleus have been performed by the Dirac-Fock method. The experimental results are compared with these calculations as well as with the predictions of the semiempirical theory.
Resumo:
Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are used to analyze the volume isotope shifts of the resonance transitions in the group-IIa and -IIb elements as well as in Yb. This is done together with a review of the isotope shift theory, including a critical evaluation and comparison of the semiempirical calculation of volume isotope shifts commonly used today. Electronic factors F_i, proportional to differences of electronic densities over the nuclear volume, are discussed within various approximations and compared with experimental results.
Resumo:
Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Resumo:
The comparison between the experimental binding energies for the K, L, and M electrons for fermium and the results of our Dirac-Fock calculation, taking into account all tractable corrections, leads to agreement within about 20 eV. This shows that the present method of calculation is an adequate description of this problem and that nonlinear electrodynamical effects will not be present in nature or will be smaller than 1% compared to the values recently proposed. It is found that the energies of electronic transitions can now be used to estimate the nuclear radius.
Resumo:
Following an earlier observation in F VI we identified the line pair 1s2s2p^2 {^5P}-1s2s2p3d {^5P^0} , {^5D^0} for the elements N, O, Mg, and tentatively for A1 and Si in beam-foil spectra. Assignment was established by comparison with Multi-Configuration Dirac-Fock calculations along the isoelectronic sequence. Using this method we also identified some quartet lines of lithium-like ions with Z > 10.
Resumo:
To describe the time dependence of an atomic collision system the Dirac equation usually is rewritten in a coupled channel equation. We first discuss part of the approximation used in this approach and the connection of the many particle with the one particle interpretation. The coupled channel equations are solved for the system F{^8+} - Ne using static selfconsistent many electron Dirac-Fock-Slater wavefunctions as basis. The resulting P(b) curves for the creation of a Ne K-hole are in reasonable agreement with the experimental results.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.