35 resultados para Thermische Belastung


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Für große Windenergieanlagen werden neue Pitchregler wie Einzelblattregler oder Turmdämpfungsregler entwickelt. Während diese neuen Pitchregler die Elemente der Windenergieanlagen entlasten, wird das Pitchantriebssystem stärker belastet. Die Pitchantriebe müssen weitaus häufiger bei höherer Amplitude arbeiten. Um die neuen Pitchregler nutzen zu können, muss zunächst das Problem der Materialermüdung der Pitchantriebssysteme gelöst werden. Das Getriebespiel in Getrieben und zwischen Ritzeln und dem Zahnkranz erhöht die Materialermüdung in den Pitchantriebssystemen. In dieser Studie werden als Lösung zwei Pitchantriebe pro Blatt vorgeschlagen. Die beiden Pitchantriebe erzeugen eine Spannung auf dem Pitchantriebssystem und kompensieren das Getriebespiel. Drehmomentspitzen, die eine Materialermüdung verursachen, treten bei diesem System mit zwei Pitchmotoren nicht mehr auf. Ein Reglerausgang wird via Drehmomentverteiler auf die beiden Pitchantriebe übertragen. Es werden mehrere Methoden verglichen und der leistungsfähigste Drehmomentverteiler ausgewählt. Während die Pitchantriebe in Bewegung sind, ändert sich die Spannung auf den Getrieben. Die neuen Pitchregler verstellen den Pitchwinkel in einer sinusförmigen Welle. Der Profilgenerator, der derzeit als Pitchwinkelregler verwendet wird, kann eine Phasenverzögerung im sinusförmigen Pitchwinkel verursachen. Zusätzlich erzeugen große Windenergieanlagen eine hohe Last, die sich störend auf die Pitchbewegung auswirkt. Änderungen der viskosen Reibung und Nichtlinearität der Gleitreibung bzw. Coulombsche Reibung des Pitchregelsystems erschweren zudem die Entwicklung eines Pitchwinkelreglers. Es werden zwei robuste Regler (H∞ und μ–synthesis ) vorgestellt und mit zwei herkömmlichen Reglern (PD und Kaskadenregler) verglichen. Zur Erprobung des Pitchantriebssystems und des Pitchwinkelreglers wird eine Prüfanordnung verwendet. Da der Kranz nicht mit einem Positionssensor ausgestattet ist, wird ein Überwachungselement entwickelt, das die Kranzposition meldet. Neben den beiden Pitchantrieben sind zwei Lastmotoren mit dem Kranz verbunden. Über die beiden Lastmotoren wird das Drehmoment um die Pitchachse einer Windenergieanlage simuliert. Das Drehmoment um die Pitchachse setzt sich zusammen aus Schwerkraft, aerodynamischer Kraft, zentrifugaler Belastung, Reibung aufgrund des Kippmoments und der Beschleunigung bzw. Verzögerung des Rotorblatts. Das Blatt wird als Zweimassenschwinger modelliert. Große Windenergieanlagen und neue Pitchregler für die Anlagen erfordern ein neues Pitchantriebssystem. Als Hardware-Lösung bieten sich zwei Pitchantriebe an mit einem robusten Regler als Software.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bei der Auslegung von Trocknungsprozessen empfindlicher biologischer Güter spielt die Produktqualität eine zunehmend wichtige Rolle. Obwohl der Einfluss der Trocknungsparameter auf die Trocknungskinetik von Äpfeln bereits Gegenstand vieler Studien war, sind die Auswirkungen auf die Produktqualität bisher kaum bekannt. Die Untersuchung dieses Sachverhalts und die Entwicklung geeigneter Prozessstrategien zur Verbesserung der Qualität des resultierenden Produkts, waren das Ziel der vorliegenden Arbeit. In einem ersten Schritt wurden zunächst umfangreiche stationäre Grundlagenversuche durchgeführt, die zeigten, dass eine Lufttemperatur im höheren Bereich, eine möglichst hohe Luftgeschwindigkeit und eine niedrige Taupunkttemperatur zur geringsten Trocknungszeit bei gleichzeitig guter optischer Qualität führt. Die Beurteilung dieser Qualitätsveränderungen erfolgte mit Hilfe einer neu eingeführten Bezugsgröße, der kumulierten thermischen Belastung, die durch das zeitliche Integral über der Oberflächentemperatur repräsentiert wird und die Vergleichbarkeit der Versuchsergebnisse entscheidend verbessert. Im zweiten Schritt wurden die Ergebnisse der Einzelschichtversuche zur Aufstellung eines numerischen Simulationsmodells verwendet, welches sowohl die entsprechenden Transportvorgänge, als auch die Formveränderung des Trocknungsgutes berücksichtigt. Das Simulationsmodell sowie die experimentellen Daten waren die Grundlage zur anschließenden Entwicklung von Prozessstrategien für die konvektive Trocknung von Äpfeln, die die resultierende Produktqualität, repräsentiert durch die Produktfarbe und –form, verbessern und gleichzeitig möglichst energieeffizient sein sollten. In einem weiteren Schritt wurde die Übertragbarkeit auf den industriellen Maßstab untersucht, wobei die entsprechenden Prozessstrategien an einer neu entwickelten, kostengünstigen Trocknungsanlage erfolgreich implementiert werden konnten. Das Ziel einer verbesserten Produktqualität konnte mit Hilfe unterschiedlicher instationärer Trocknungsschemata sowohl am Einzelschichttrockner, als auch im größeren Maßstab erreicht werden. Das vorgestellte numerische Simulationsmodell zeigte auch bei der Vorhersage des instationären Trocknungsprozesses eine hohe Genauigkeit und war außerdem in der Lage, den Trocknungsverlauf im industriellen Maßstab zuverlässig voraus zu berechnen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ein Drittel des weltweiten gesamten Energiebedarfs wird durch Gebäude verbraucht. Um diesen Energiebedarf teilweise zu decken, den erheblichen Energieverbrauch zu reduzieren und weiterhin andere Gebäudefunktionen beizubehalten, ist Gebäudeintegrierte Photovoltaik (BIPV) eine der am besten geeigneten Lösungen für die Gebäudenanwendung. Im Bezug auf eine Vielzahl von Gestalltungsmöglichkeiten, sind die Randbedingungen der BIPV-Anwendungen eindeutig anders im Vergleich zu Standard-PV-Anwendungen, insbesondere bezüglich der Betriebstemperatur. Bisher gab es nicht viele Informationen zu den relevanten thermischen Auswirkungen auf die entsprechenden elektrischen Eigenschaften zusammen mit thermischen und mechanischen relevanten Gebäudenfunktionen. Die meisten Hersteller übernehmen diese Eigenschaften von entsprechenden PV-Modulen und konventionellen Bauprodukten Normen, die zur ungenauen System- und Gebäudeplanungen führen. Deshalb ist die Untersuchung des thermischen Einflusses auf elektrische, thermische sowie mechanische Eigenschaften das Hauptziel der vorliegenden Arbeit. Zunächst wird das Temperatur-Model mit dem Power-Balance-Konzept erstellt. Unter Berücksichtigung der variablen Installationsmöglichkeiten und Konfigurationen des Moduls wird das Model auf Basis dynamischer und stationär Eigenschaften entwickelt. Im Hinblick auf die dynamische Simulation können der Energieertrag und Leistung zusammen mit der thermischen Gebäudesimulation in Echtzeit simuliert werden. Für stationäre Simulationen können die relevanten Gebäudefunktionen von BIPV-Modulen sowohl im Sommer als auch im Winter simuliert werden. Basierend auf unterschiedlichen thermischen und mechanischen Last-Szenarien wurde darüber hinaus das mechanische Model zusammen mit Variationen von Belastungsdauer, Montagesystem und Verkapselungsmaterialien entwickelt. Um die Temperatur- und Mechanik-Modelle zu validieren, wurden die verschiedenen Prüfeinrichtungen zusammen mit neuen Testmethoden entwickelt. Bei Verwendung der Prüfanlage „PV variable mounting system“ und „mechanical testing equipment“ werden zudem die verschiedenen Szenarien von Montagesystemen, Modul-Konfigurationen und mechanischen Belastungen emuliert. Mit der neuen Testmethode „back-bias current concept“ können zum einen die solare Einstrahlung und bestimmte Betriebstemperaturen eingestellt werden. Darüber hinaus wurden mit den eingangs erwähnten validierten Modellen das jeweilige elektrische, thermische und mechanische Verhalten auf andere Konfigurationen bewertet. Zum Abschluss wird die Anwendung von Software-Tools bei PV-Herstellern im Hinblick auf die entsprechenden Modellentwicklungen thematisiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser interdisziplinären Doktorarbeit wird eine (Al)GaN Halbleiteroberflächenmodifikation untersucht, mit dem Ziel eine verbesserte Grenzfläche zwischen dem Material und dem Dielektrikum zu erzeugen. Aufgrund von Oberflächenzuständen zeigen GaN basierte HEMT Strukturen üblicherweise große Einsatzspannungsverschiebungen. Bisher wurden zur Grenzflächenmodifikation besonders die Entfernung von Verunreinigungen wie Sauerstoff oder Kohlenstoff analysiert. Die nasschemischen Oberflächenbehandlungen werden vor der Abscheidung des Dielektrikums durchgeführt, wobei die Kontaminationen jedoch nicht vollständig entfernt werden können. In dieser Arbeit werden Modifikationen der Oberfläche in wässrigen Lösungen, in Gasen sowie in Plasma analysiert. Detaillierte Untersuchungen zeigen, dass die inerte (0001) c-Ebene der Oberfläche kaum reagiert, sondern hauptsächlich die weniger polaren r- und m- Ebenen. Dies kann deutlich beim Defektätzen sowie bei der thermischen Oxidation beobachtet werden. Einen weiteren Ansatz zur Oberflächenmodifikation stellen Plasmabehandlungen dar. Hierbei wird die Oberflächenterminierung durch eine nukleophile Substitution mit Lewis Basen, wie Fluorid, Chlorid oder Oxid verändert, wodurch sich die Elektronegativitätsdifferenz zwischen dem Metall und dem Anion im Vergleich zur Metall-Stickstoff Bindung erhöht. Dies führt gleichzeitig zu einer Erhöhung der Potentialdifferenz des Schottky Kontakts. Sauerstoff oder Fluor besitzen die nötige thermische Stabilität um während einer Silicium-nitridabscheidung an der (Al)GaN Oberfläche zu bleiben. Sauerstoffvariationen an der Oberfläche werden in NH3 bei 700°C, welches die nötigen Bedingungen für die Abscheidung darstellen, immer zu etwa 6-8% reduziert – solche Grenzflächen zeigen deswegen auch keine veränderten Ergebnisse in Einsatzspannungsuntersuchungen. Im Gegensatz dazu zeigt die fluorierte Oberfläche ein völlig neues elektrisches Verhalten: ein neuer dominanter Oberflächendonator mit einem schnellen Trapping und Detrapping Verhalten wird gefunden. Das Energieniveau dieses neuen, stabilen Donators liegt um ca. 0,5 eV tiefer in der Bandlücke als die ursprünglichen Energieniveaus der Oberflächenzustände. Physikalisch-chemische Oberflächen- und Grenzflächenuntersuchung mit XPS, AES oder SIMS erlauben keine eindeutige Schlussfolgerung, ob das Fluor nach der Si3N4 Abscheidung tatsächlich noch an der Grenzfläche vorhanden ist, oder einfach eine stabilere Oberflächenrekonstruktion induziert wurde, bei welcher es selbst nicht beteiligt ist. In beiden Fällen ist der neue Donator in einer Konzentration von 4x1013 at/cm-2 vorhanden. Diese Dichte entspricht einer Oberflächenkonzentration von etwa 1%, was genau an der Nachweisgrenze der spektroskopischen Methoden liegt. Jedoch werden die elektrischen Oberflächeneigenschaften durch die Oberflächenmodifikation deutlich verändert und ermöglichen eine potentiell weiter optimierbare Grenzfläche.