93 resultados para System analysis - Data processing
Resumo:
Laut dem Statistischen Bundesamts ist die Zahl der im Straßenverkehr getöteten Personen zwar rückläufig, jedoch wurden in 2010 in Deutschland noch immer 3648 Personen bei Unfällen im Straßenverkehr getötet, 476 davon waren Fußgänger. In den letzten Dekaden lag der Schwerpunkt der Forschungsarbeiten zur Reduzierung der Verkehrstoten besonders im Bereich des Insassenschutzes. Erst in den letzten Jahren rückte die Thematik des Fußgängerschutzes mehr in den Fokus des öffentlichen Interesses und der Automobilhersteller. Forschungsarbeiten beschäftigen sich mit unterschiedlichen Ansätzen die Folgen einer Kollision zwischen einem Auto und einem Fußgänger zu reduzieren. Hierzu zählen z.B. weiche Aufprallzonen im Frontbereich eines Autos, aufstellende Motorhaube oder auch Fußgängerairbags im Bereich der Frontscheibe. Da passive Ansätze aber nur die Folgen eines Aufpralls am Fahrzeug, nicht aber die Folgen eines Sekundäraufpralls auf dem Boden verringern können, werden parallel Ansätze zur aktiven Kollisionsvermeidung untersucht. Die bisher verfolgten, ebenso wertvollen Ansätze, zeigen jedoch jeweils Schwachpunkte in Ihrer Lösung. So ist der Einsatz der bisherigen bordautonomen Ansätze auf Grund der Anforderungen der verschiedenen Systeme, wie der Notwendigkeit einer direkten, ungestörten Sichtverbindung zwischen Auto und Fußgänger, leider nur eingeschränkt möglich. Kooperative Systeme, die ein zusätzliches, vom Fußgänger mitzuführendes Sende-Empfänger Gerät zur Ermittlung der Fußgängerposition benötigen sind hingegen mit zusätzlichem Aufwand für den Fußgänger verbunden. Auch fehlen den bisher verfolgten Ansätzen Informationen über den Fußgänger, wodurch es schwierig ist, wenn nicht gar manchmal unmöglich, eine Situation korrekt bewerten zu können. Auch sehen diese Systeme keine Warnung des Fußgängers vor. In dieser Arbeit wird ein Verfahren zum Fußgängerschutz betrachtet, welches per Funk ausgetauschte Informationen zur Risikobewertung eines Szenarios nutzt. Hierbei werden neben den vom Auto bekannten Informationen und Parameter, die vom Smartphone des Fußgängers zur Verfügung gestellten Kontextinformationen verwendet. Es werden zum einen die Parameter, Bedingungen und Anforderungen analysiert und die Architektur des Systems betrachtet. Ferner wird das Ergbnis einer Untersuchung zur generellen Umsetzbarkeit mit bereits heute in Smartphone verfügbaren Funktechnolgien vorgestellt. Final werden die bereits vielversprechenden Ergebnisse eines ersten Experiments zur Nutzbarkeit von Sensorinformationen des Smartphones im Bereich der Kollisionsvermeidung vorgestellt und diskutiert.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Web services from different partners can be combined to applications that realize a more complex business goal. Such applications built as Web service compositions define how interactions between Web services take place in order to implement the business logic. Web service compositions not only have to provide the desired functionality but also have to comply with certain Quality of Service (QoS) levels. Maximizing the users' satisfaction, also reflected as Quality of Experience (QoE), is a primary goal to be achieved in a Service-Oriented Architecture (SOA). Unfortunately, in a dynamic environment like SOA unforeseen situations might appear like services not being available or not responding in the desired time frame. In such situations, appropriate actions need to be triggered in order to avoid the violation of QoS and QoE constraints. In this thesis, proper solutions are developed to manage Web services and Web service compositions with regard to QoS and QoE requirements. The Business Process Rules Language (BPRules) was developed to manage Web service compositions when undesired QoS or QoE values are detected. BPRules provides a rich set of management actions that may be triggered for controlling the service composition and for improving its quality behavior. Regarding the quality properties, BPRules allows to distinguish between the QoS values as they are promised by the service providers, QoE values that were assigned by end-users, the monitored QoS as measured by our BPR framework, and the predicted QoS and QoE values. BPRules facilitates the specification of certain user groups characterized by different context properties and allows triggering a personalized, context-aware service selection tailored for the specified user groups. In a service market where a multitude of services with the same functionality and different quality values are available, the right services need to be selected for realizing the service composition. We developed new and efficient heuristic algorithms that are applied to choose high quality services for the composition. BPRules offers the possibility to integrate multiple service selection algorithms. The selection algorithms are applicable also for non-linear objective functions and constraints. The BPR framework includes new approaches for context-aware service selection and quality property predictions. We consider the location information of users and services as context dimension for the prediction of response time and throughput. The BPR framework combines all new features and contributions to a comprehensive management solution. Furthermore, it facilitates flexible monitoring of QoS properties without having to modify the description of the service composition. We show how the different modules of the BPR framework work together in order to execute the management rules. We evaluate how our selection algorithms outperform a genetic algorithm from related research. The evaluation reveals how context data can be used for a personalized prediction of response time and throughput.
Resumo:
Die gegenwärtige Entwicklung der internationalen Klimapolitik verlangt von Deutschland eine Reduktion seiner Treibhausgasemissionen. Wichtigstes Treibhausgas ist Kohlendioxid, das durch die Verbrennung fossiler Energieträger in die Atmosphäre freigesetzt wird. Die Reduktionsziele können prinzipiell durch eine Verminderung der Emissionen sowie durch die Schaffung von Kohlenstoffsenken erreicht werden. Senken beschreiben dabei die biologische Speicherung von Kohlenstoff in Böden und Wäldern. Eine wichtige Einflussgröße auf diese Prozesse stellt die räumliche Dynamik der Landnutzung einer Region dar. In dieser Arbeit wird das Modellsystem HILLS entwickelt und zur Simulation dieser komplexen Wirkbeziehungen im Bundesland Hessen genutzt. Ziel ist es, mit HILLS über eine Analyse des aktuellen Zustands hinaus auch Szenarien über Wege der zukünftigen regionalen Entwicklung von Landnutzung und ihrer Wirkung auf den Kohlenstoffhaushalt bis 2020 zu untersuchen. Für die Abbildung der räumlichen und zeitlichen Dynamik von Landnutzung in Hessen wird das Modell LUCHesse entwickelt. Seine Aufgabe ist die Simulation der relevanten Prozesse auf einem 1 km2 Raster, wobei die Raten der Änderung exogen als Flächentrends auf Ebene der hessischen Landkreise vorgegeben werden. LUCHesse besteht aus Teilmodellen für die Prozesse: (A) Ausbreitung von Siedlungs- und Gewerbefläche, (B) Strukturwandel im Agrarsektor sowie (C) Neuanlage von Waldflächen (Aufforstung). Jedes Teilmodell umfasst Methoden zur Bewertung der Standorteignung der Rasterzellen für unterschiedliche Landnutzungsklassen und zur Zuordnung der Trendvorgaben zu solchen Rasterzellen, die jeweils am besten für eine Landnutzungsklasse geeignet sind. Eine Validierung der Teilmodelle erfolgt anhand von statistischen Daten für den Zeitraum von 1990 bis 2000. Als Ergebnis eines Simulationslaufs werden für diskrete Zeitschritte digitale Karten der Landnutzugsverteilung in Hessen erzeugt. Zur Simulation der Kohlenstoffspeicherung wird eine modifizierte Version des Ökosystemmodells Century entwickelt (GIS-Century). Sie erlaubt einen gesteuerten Simulationslauf in Jahresschritten und unterstützt die Integration des Modells als Komponente in das HILLS Modellsystem. Es werden verschiedene Anwendungsschemata für GIS-Century entwickelt, mit denen die Wirkung der Stilllegung von Ackerflächen, der Aufforstung sowie der Bewirtschaftung bereits bestehender Wälder auf die Kohlenstoffspeicherung untersucht werden kann. Eine Validierung des Modells und der Anwendungsschemata erfolgt anhand von Feld- und Literaturdaten. HILLS implementiert eine sequentielle Kopplung von LUCHesse mit GIS-Century. Die räumliche Kopplung geschieht dabei auf dem 1 km2 Raster, die zeitliche Kopplung über die Einführung eines Landnutzungsvektors, der die Beschreibung der Landnutzungsänderung einer Rasterzelle während des Simulationszeitraums enthält. Außerdem integriert HILLS beide Modelle über ein dienste- und datenbankorientiertes Konzept in ein Geografisches Informationssystem (GIS). Auf diesem Wege können die GIS-Funktionen zur räumlichen Datenhaltung und Datenverarbeitung genutzt werden. Als Anwendung des Modellsystems wird ein Referenzszenario für Hessen mit dem Zeithorizont 2020 berechnet. Das Szenario setzt im Agrarsektor eine Umsetzung der AGENDA 2000 Politik voraus, die in großem Maße zu Stilllegung von Ackerflächen führt, während für den Bereich Siedlung und Gewerbe sowie Aufforstung die aktuellen Trends der Flächenausdehnung fortgeschrieben werden. Mit HILLS ist es nun möglich, die Wirkung dieser Landnutzungsänderungen auf die biologische Kohlenstoffspeicherung zu quantifizieren. Während die Ausdehnung von Siedlungsflächen als Kohlenstoffquelle identifiziert werden kann (37 kt C/a), findet sich die wichtigste Senke in der Bewirtschaftung bestehender Waldflächen (794 kt C/a). Weiterhin führen die Stilllegung von Ackerfläche (26 kt C/a) sowie Aufforstung (29 kt C/a) zu einer zusätzlichen Speicherung von Kohlenstoff. Für die Kohlenstoffspeicherung in Böden zeigen die Simulationsexperimente sehr klar, dass diese Senke nur von beschränkter Dauer ist.
Resumo:
The restarting automaton is a restricted model of computation that was introduced by Jancar et al. to model the so-called analysis by reduction, which is a technique used in linguistics to analyze sentences of natural languages. The most general models of restarting automata make use of auxiliary symbols in their rewrite operations, although this ability does not directly correspond to any aspect of the analysis by reduction. Here we put restrictions on the way in which restarting automata use auxiliary symbols, and we investigate the influence of these restrictions on their expressive power. In fact, we consider two types of restrictions. First, we consider the number of auxiliary symbols in the tape alphabet of a restarting automaton as a measure of its descriptional complexity. Secondly, we consider the number of occurrences of auxiliary symbols on the tape as a dynamic complexity measure. We establish some lower and upper bounds with respect to these complexity measures concerning the ability of restarting automata to recognize the (deterministic) context-free languages and some of their subclasses.
Resumo:
Restarting automata are a restricted model of computation that was introduced by Jancar et.al. to model the so-called analysis by reduction. A computation of a restarting automaton consists of a sequence of cycles such that in each cycle the automaton performs exactly one rewrite step, which replaces a small part of the tape content by another, even shorter word. Thus, each language accepted by a restarting automaton belongs to the complexity class $CSL cap NP$. Here we consider a natural generalization of this model, called shrinking restarting automaton, where we do no longer insist on the requirement that each rewrite step decreases the length of the tape content. Instead we require that there exists a weight function such that each rewrite step decreases the weight of the tape content with respect to that function. The language accepted by such an automaton still belongs to the complexity class $CSL cap NP$. While it is still unknown whether the two most general types of one-way restarting automata, the RWW-automaton and the RRWW-automaton, differ in their expressive power, we will see that the classes of languages accepted by the shrinking RWW-automaton and the shrinking RRWW-automaton coincide. As a consequence of our proof, it turns out that there exists a reduction by morphisms from the language class $cL(RRWW)$ to the class $cL(RWW)$. Further, we will see that the shrinking restarting automaton is a rather robust model of computation. Finally, we will relate shrinking RRWW-automata to finite-change automata. This will lead to some new insights into the relationships between the classes of languages characterized by (shrinking) restarting automata and some well-known time and space complexity classes.
Resumo:
Die stereoskopische 3-D-Darstellung beruht auf der naturgetreuen Präsentation verschiedener Perspektiven für das rechte und linke Auge. Sie erlangt in der Medizin, der Architektur, im Design sowie bei Computerspielen und im Kino, zukünftig möglicherweise auch im Fernsehen, eine immer größere Bedeutung. 3-D-Displays dienen der zusätzlichen Wiedergabe der räumlichen Tiefe und lassen sich grob in die vier Gruppen Stereoskope und Head-mounted-Displays, Brillensysteme, autostereoskopische Displays sowie echte 3-D-Displays einteilen. Darunter besitzt der autostereoskopische Ansatz ohne Brillen, bei dem N≥2 Perspektiven genutzt werden, ein hohes Potenzial. Die beste Qualität in dieser Gruppe kann mit der Methode der Integral Photography, die sowohl horizontale als auch vertikale Parallaxe kodiert, erreicht werden. Allerdings ist das Verfahren sehr aufwendig und wird deshalb wenig genutzt. Den besten Kompromiss zwischen Leistung und Preis bieten präzise gefertigte Linsenrasterscheiben (LRS), die hinsichtlich Lichtausbeute und optischen Eigenschaften den bereits früher bekannten Barrieremasken überlegen sind. Insbesondere für die ergonomisch günstige Multiperspektiven-3-D-Darstellung wird eine hohe physikalische Monitorauflösung benötigt. Diese ist bei modernen TFT-Displays schon recht hoch. Eine weitere Verbesserung mit dem theoretischen Faktor drei erreicht man durch gezielte Ansteuerung der einzelnen, nebeneinander angeordneten Subpixel in den Farben Rot, Grün und Blau. Ermöglicht wird dies durch die um etwa eine Größenordnung geringere Farbauflösung des menschlichen visuellen Systems im Vergleich zur Helligkeitsauflösung. Somit gelingt die Implementierung einer Subpixel-Filterung, welche entsprechend den physiologischen Gegebenheiten mit dem in Luminanz und Chrominanz trennenden YUV-Farbmodell arbeitet. Weiterhin erweist sich eine Schrägstellung der Linsen im Verhältnis von 1:6 als günstig. Farbstörungen werden minimiert, und die Schärfe der Bilder wird durch eine weniger systematische Vergrößerung der technologisch unvermeidbaren Trennelemente zwischen den Subpixeln erhöht. Der Grad der Schrägstellung ist frei wählbar. In diesem Sinne ist die Filterung als adaptiv an den Neigungswinkel zu verstehen, obwohl dieser Wert für einen konkreten 3-D-Monitor eine Invariante darstellt. Die zu maximierende Zielgröße ist der Parameter Perspektiven-Pixel als Produkt aus Anzahl der Perspektiven N und der effektiven Auflösung pro Perspektive. Der Idealfall einer Verdreifachung wird praktisch nicht erreicht. Messungen mit Hilfe von Testbildern sowie Schrifterkennungstests lieferten einen Wert von knapp über 2. Dies ist trotzdem als eine signifikante Verbesserung der Qualität der 3-D-Darstellung anzusehen. In der Zukunft sind weitere Verbesserungen hinsichtlich der Zielgröße durch Nutzung neuer, feiner als TFT auflösender Technologien wie LCoS oder OLED zu erwarten. Eine Kombination mit der vorgeschlagenen Filtermethode wird natürlich weiterhin möglich und ggf. auch sinnvoll sein.
Resumo:
Digitales stochastisches Magnetfeld-Sensorarray Stefan Rohrer Im Rahmen eines mehrjährigen Forschungsprojektes, gefördert von der Deutschen Forschungsgesellschaft (DFG), wurden am Institut für Mikroelektronik (IPM) der Universität Kassel digitale Magnetfeldsensoren mit einer Breite bis zu 1 µm entwickelt. Die vorliegende Dissertation stellt ein aus diesem Forschungsprojekt entstandenes Magnetfeld-Sensorarray vor, das speziell dazu entworfen wurde, um digitale Magnetfelder schnell und auf minimaler Fläche mit einer guten räumlichen und zeitlichen Auflösung zu detektieren. Der noch in einem 1,0µm-CMOS-Prozess gefertigte Test-Chip arbeitet bis zu einer Taktfrequenz von 27 MHz bei einem Sensorabstand von 6,75 µm. Damit ist er das derzeit kleinste und schnellste digitale Magnetfeld-Sensorarray in einem Standard-CMOS-Prozess. Konvertiert auf eine 0,09µm-Technologie können Frequenzen bis 1 GHz erreicht werden bei einem Sensorabstand von unter 1 µm. In der Dissertation werden die wichtigsten Ergebnisse des Projekts detailliert beschrieben. Basis des Sensors ist eine rückgekoppelte Inverter-Anordnung. Als magnetfeldsensitives Element dient ein auf dem Hall-Effekt basierender Doppel-Drain-MAGFET, der das Verhalten der Kippschaltung beeinflusst. Aus den digitalen Ausgangsdaten kann die Stärke und die Polarität des Magnetfelds bestimmt werden. Die Gesamtanordnung bildet einen stochastischen Magnetfeld-Sensor. In der Arbeit wird ein Modell für das Kippverhalten der rückgekoppelten Inverter präsentiert. Die Rauscheinflüsse des Sensors werden analysiert und in einem stochastischen Differentialgleichungssystem modelliert. Die Lösung der stochastischen Differentialgleichung zeigt die Entwicklung der Wahrscheinlichkeitsverteilung des Ausgangssignals über die Zeit und welche Einflussfaktoren die Fehlerwahrscheinlichkeit des Sensors beeinflussen. Sie gibt Hinweise darauf, welche Parameter für das Design und Layout eines stochastischen Sensors zu einem optimalen Ergebnis führen. Die auf den theoretischen Berechnungen basierenden Schaltungen und Layout-Komponenten eines digitalen stochastischen Sensors werden in der Arbeit vorgestellt. Aufgrund der technologisch bedingten Prozesstoleranzen ist für jeden Detektor eine eigene kompensierende Kalibrierung erforderlich. Unterschiedliche Realisierungen dafür werden präsentiert und bewertet. Zur genaueren Modellierung wird ein SPICE-Modell aufgestellt und damit für das Kippverhalten des Sensors eine stochastische Differentialgleichung mit SPICE-bestimmten Koeffizienten hergeleitet. Gegenüber den Standard-Magnetfeldsensoren bietet die stochastische digitale Auswertung den Vorteil einer flexiblen Messung. Man kann wählen zwischen schnellen Messungen bei reduzierter Genauigkeit und einer hohen lokalen Auflösung oder einer hohen Genauigkeit bei der Auswertung langsam veränderlicher Magnetfelder im Bereich von unter 1 mT. Die Arbeit präsentiert die Messergebnisse des Testchips. Die gemessene Empfindlichkeit und die Fehlerwahrscheinlichkeit sowie die optimalen Arbeitspunkte und die Kennliniencharakteristik werden dargestellt. Die relative Empfindlichkeit der MAGFETs beträgt 0,0075/T. Die damit erzielbaren Fehlerwahrscheinlichkeiten werden in der Arbeit aufgelistet. Verglichen mit dem theoretischen Modell zeigt das gemessene Kippverhalten der stochastischen Sensoren eine gute Übereinstimmung. Verschiedene Messungen von analogen und digitalen Magnetfeldern bestätigen die Anwendbarkeit des Sensors für schnelle Magnetfeldmessungen bis 27 MHz auch bei kleinen Magnetfeldern unter 1 mT. Die Messungen der Sensorcharakteristik in Abhängigkeit von der Temperatur zeigen, dass die Empfindlichkeit bei sehr tiefen Temperaturen deutlich steigt aufgrund der Abnahme des Rauschens. Eine Zusammenfassung und ein ausführliches Literaturverzeichnis geben einen Überblick über den Stand der Technik.
Resumo:
Analysis by reduction is a method used in linguistics for checking the correctness of sentences of natural languages. This method is modelled by restarting automata. All types of restarting automata considered in the literature up to now accept at least the deterministic context-free languages. Here we introduce and study a new type of restarting automaton, the so-called t-RL-automaton, which is an RL-automaton that is rather restricted in that it has a window of size one only, and that it works under a minimal acceptance condition. On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. Here we study the gap-complexity of these automata. The membership problem for a language that is accepted by a t-RL-automaton with a bounded number of gaps can be solved in polynomial time. On the other hand, t-RL-automata with an unbounded number of gaps accept NP-complete languages.
Resumo:
Analysis by reduction is a method used in linguistics for checking the correctness of sentences of natural languages. This method is modelled by restarting automata. Here we study a new type of restarting automaton, the so-called t-sRL-automaton, which is an RL-automaton that is rather restricted in that it has a window of size 1 only, and that it works under a minimal acceptance condition. On the other hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. We focus on the descriptional complexity of these automata, establishing two complexity measures that are both based on the description of t-sRL-automata in terms of so-called meta-instructions. We present some hierarchy results as well as a non-recursive trade-off between deterministic 2-sRL-automata and finite-state acceptors.
Resumo:
Tagungsband - Vorträge vom Automation Symposium 2006
Resumo:
In this publication, we report on an online survey that was carried out among parallel programmers. More than 250 people worldwide have submitted answers to our questions, and their responses are analyzed here. Although not statistically sound, the data we provide give useful insights about which parallel programming systems and languages are known and in actual use. For instance, the collected data indicate that for our survey group MPI and (to a lesser extent) C are the most widely used parallel programming system and language, respectively.
Resumo:
Die ubiquitäre Datenverarbeitung ist ein attraktives Forschungsgebiet des vergangenen und aktuellen Jahrzehnts. Es handelt von unaufdringlicher Unterstützung von Menschen in ihren alltäglichen Aufgaben durch Rechner. Diese Unterstützung wird durch die Allgegenwärtigkeit von Rechnern ermöglicht die sich spontan zu verteilten Kommunikationsnetzwerken zusammen finden, um Informationen auszutauschen und zu verarbeiten. Umgebende Intelligenz ist eine Anwendung der ubiquitären Datenverarbeitung und eine strategische Forschungsrichtung der Information Society Technology der Europäischen Union. Das Ziel der umbebenden Intelligenz ist komfortableres und sichereres Leben. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung charakterisieren sich durch Heterogenität der verwendeten Rechner. Diese reichen von Kleinstrechnern, eingebettet in Gegenstände des täglichen Gebrauchs, bis hin zu leistungsfähigen Großrechnern. Die Rechner verbinden sich spontan über kabellose Netzwerktechnologien wie wireless local area networks (WLAN), Bluetooth, oder UMTS. Die Heterogenität verkompliziert die Entwicklung und den Aufbau von verteilten Kommunikationsnetzwerken. Middleware ist eine Software Technologie um Komplexität durch Abstraktion zu einer homogenen Schicht zu reduzieren. Middleware bietet eine einheitliche Sicht auf die durch sie abstrahierten Ressourcen, Funktionalitäten, und Rechner. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung sind durch die spontane Verbindung von Rechnern gekennzeichnet. Klassische Middleware geht davon aus, dass Rechner dauerhaft miteinander in Kommunikationsbeziehungen stehen. Das Konzept der dienstorienterten Architektur ermöglicht die Entwicklung von Middleware die auch spontane Verbindungen zwischen Rechnern erlaubt. Die Funktionalität von Middleware ist dabei durch Dienste realisiert, die unabhängige Software-Einheiten darstellen. Das Wireless World Research Forum beschreibt Dienste die zukünftige Middleware beinhalten sollte. Diese Dienste werden von einer Ausführungsumgebung beherbergt. Jedoch gibt es noch keine Definitionen wie sich eine solche Ausführungsumgebung ausprägen und welchen Funktionsumfang sie haben muss. Diese Arbeit trägt zu Aspekten der Middleware-Entwicklung für verteilte Kommunikationsnetzwerke in der ubiquitären Datenverarbeitung bei. Der Schwerpunkt liegt auf Middleware und Grundlagentechnologien. Die Beiträge liegen als Konzepte und Ideen für die Entwicklung von Middleware vor. Sie decken die Bereiche Dienstfindung, Dienstaktualisierung, sowie Verträge zwischen Diensten ab. Sie sind in einem Rahmenwerk bereit gestellt, welches auf die Entwicklung von Middleware optimiert ist. Dieses Rahmenwerk, Framework for Applications in Mobile Environments (FAME²) genannt, beinhaltet Richtlinien, eine Definition einer Ausführungsumgebung, sowie Unterstützung für verschiedene Zugriffskontrollmechanismen um Middleware vor unerlaubter Benutzung zu schützen. Das Leistungsspektrum der Ausführungsumgebung von FAME² umfasst: • minimale Ressourcenbenutzung, um auch auf Rechnern mit wenigen Ressourcen, wie z.B. Mobiltelefone und Kleinstrechnern, nutzbar zu sein • Unterstützung für die Anpassung von Middleware durch Änderung der enthaltenen Dienste während die Middleware ausgeführt wird • eine offene Schnittstelle um praktisch jede existierende Lösung für das Finden von Diensten zu verwenden • und eine Möglichkeit der Aktualisierung von Diensten zu deren Laufzeit um damit Fehlerbereinigende, optimierende, und anpassende Wartungsarbeiten an Diensten durchführen zu können Eine begleitende Arbeit ist das Extensible Constraint Framework (ECF), welches Design by Contract (DbC) im Rahmen von FAME² nutzbar macht. DbC ist eine Technologie um Verträge zwischen Diensten zu formulieren und damit die Qualität von Software zu erhöhen. ECF erlaubt das aushandeln sowie die Optimierung von solchen Verträgen.
Resumo:
This report gives a detailed discussion on the system, algorithms, and techniques that we have applied in order to solve the Web Service Challenges (WSC) of the years 2006 and 2007. These international contests are focused on semantic web service composition. In each challenge of the contests, a repository of web services is given. The input and output parameters of the services in the repository are annotated with semantic concepts. A query to a semantic composition engine contains a set of available input concepts and a set of wanted output concepts. In order to employ an offered service for a requested role, the concepts of the input parameters of the offered operations must be more general than requested (contravariance). In contrast, the concepts of the output parameters of the offered service must be more specific than requested (covariance). The engine should respond to a query by providing a valid composition as fast as possible. We discuss three different methods for web service composition: an uninformed search in form of an IDDFS algorithm, a greedy informed search based on heuristic functions, and a multi-objective genetic algorithm.