42 resultados para Sustainable Food Systems
Resumo:
The role urban and peri-urban agriculture (UPA) plays in reducing urban poverty and ensuring environmental sustainability was recognized by the Millennium Development Goals (MGDs). India is the world’s largest democratic nation with a population of 1.2 billion. The rapid urbanization and high proportion of people below the poverty line along with higher migration to urban areas make India vulnerable to food crisis and urbanization of poverty. Ensuring jobs and food security among urban poor is a major challenge in India. The role of UPA can be well explained and understood in this context. This paper focuses on the current situation of UPA production in India with special attention to wastewater irrigation. This question is being posed about the various human health risks from wastewater irrigation which are faced by farmers and labourers, and, secondly by consumers. The possible health hazards involve microbial pathogens as well as helminth (intestinal parasites). Based on primary and secondary data, this paper attempts to confirm that UPA is one of the best options to address increasing urban food demand and can serve to complement rural supply chains and reduce ecological food prints in India. “Good practice urban and peri-urban agriculture” necessitates an integrated approach with suitable risk reduction mechanisms to improve the efficiency and safety of UPA production.
Resumo:
Facing the double menace of climate change threats and water crisis, poor communities have now encountered ever more severe challenges in ensuring agricultural productivity and food security. Communities hence have to manage these challenges by adopting a comprehensive approach that not only enhances water resource management, but also adapts agricultural activities to climate variability. Implemented by the Global Environment Facility’s Small Grants Programme, the Community Water Initiative (CWI) has adopted a distinctive approach to support demand-driven, innovative, low cost and community-based water resource management for food security. Experiences from CWI showed that a comprehensive, locally adapted approach that integrates water resources management, poverty reduction, climate adaptation and community empowerment provides a good model for sustainable development in poor rural areas.
Resumo:
Sweden’s recent report on Urban Sustainable Development calls out a missing link between the urban design process and citizens. This paper investigates if engaging citizens as design agents by providing a platform for alternate participation can bridge this gap, through the transfer of spatial agency and new modes of critical cartography. To assess whether this is the case, the approaches are applied to Stockholm’s urban agriculture movement in a staged intervention. The aim of the intervention was to engage citizens in locating existing and potential places for growing food and in gathering information from these sites to inform design in urban agriculture. The design-based methodologies incorporated digital and bodily interfaces for this cartography to take place. The Urban CoMapper, a smartphone digital app, captured real-time perspectives through crowd-sourced mapping. In the bodily cartography, participant’s used their bodies to trace the site and reveal their sensorial perceptions. The data gathered from these approaches gave way to a mode of artistic research for exploring urban agriculture, along with inviting artists to be engaged in the dialogues. In sum, results showed that a combination of digital and bodily approaches was necessary for a critical cartography if we want to engage citizens holistically into the urban design process as spatial agents informing urban policy. Such methodologies formed a reflective interrogation and encouraged a new intimacy with nature, in this instance, one that can transform our urban conduct by questioning our eating habits: where we get our food from and how we eat it seasonally.
Resumo:
Using the case of an economically declined neighbourhood in the post-industrial German Ruhr Area (sometimes characterized as Germany’s “Rust Belt”), we analyse, describe and conclude how urban agriculture can be used as a catalyst to stimulate and support urban renewal and regeneration, especially from a socio-cultural perspective. Using the methodological framework of participatory action research, and linking bottom-up and top-down planning approaches, a project path was developed to include the population affected and foster individual responsibility for their district, as well as to strengthen inhabitants and stakeholder groups in a permanent collective stewardship for the individual forms of urban agriculture developed and implemented. On a more abstract level, the research carried out can be characterized as a form of action research with an intended transgression of the boundaries between research, planning, design, and implementation. We conclude that by synchronously combining those four domains with intense feedback loops, synergies for the academic knowledge on the potential performance of urban agriculture in terms of sustainable development, as well as the benefits for the case-study area and the interests of individual urban gardeners can be achieved.
Resumo:
Rising global energy needs and limited fossil fuel reserves have led to increased use of renewable energies. In Germany, this has entailed massive exploitation of agricultural biomass for biogas generation, associated with unsustainable farming practices. Organic agriculture not only reduces negative environmental impacts, organic farmers were also prime movers in anaerobic digestion (AD) in Germany. This study’s aim was to identify the structure, development, and characteristics of biogas production associated with organic farming systems in order to estimate further development, as well as energetic and associated agronomic potentials. Surveys were conducted among organic farms with AD technology. 144 biogas plants could be included in the analysis. Total installed electrical capacity was 30.8 MWel, accounting for only 0.8% of the total installed electrical capacity in the German biogas sector. Recently, larger plant types (>250 kWel) with increased use of (also purchased) energy crops have emerged. Farmers noticed increases in yields (22% on average) and quality of cash crops in arable farming through integrated biogas production. In conclusion, although the share of AD in organic farming is relatively small it can provide various complementary socio-ecological benefits such as the enhancement of food output through digestate fertilization without additional need for land, while simultaneously reducing greenhouse gas emissions from livestock manures and soils. However, to achieve this eco-functional intensification, AD systems and their management have to be well adapted to farm size and production focus and based primarily on residue biomass.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.
Resumo:
The article analyses the viability of promoting crop-specific programs as a mean to improve smallholder net farm income and food security. The case study explores the relevance of European Union Stabilisation of Export Earnings (STABEX) funds in supporting Sierra Leone’s agricultural development agenda. By analysing the drivers of food security for a number of targeted smallholders in the two most important agricultural zones of Sierra Leone, it is possible to compare the suitability of crop-specific support (in rice, cocoa and coffee) versus general aid programs (public infrastructure, on and off farm diversification opportunities, sustainable practices, access to productive assets, etc.). The results indicate that crop diversification strategies are widespread and closely related to risk minimisation and enhanced food security among smallholders. Similarly, crop-specific programs mainly focusing on commercialisation tend to overlook important constraints associated to self-consumption and productivity.
Experimental and modeling studies of forced convection storage and drying systems for sweet potatoes
Resumo:
Sweet potato is an important strategic agricultural crop grown in many countries around the world. The roots and aerial vine components of the crop are used for both human consumption and, to some extent as a cheap source of animal feed. In spite of its economic value and growing contribution to health and nutrition, harvested sweet potato roots and aerial vine components has limited shelf-life and is easily susceptible to post-harvest losses. Although post-harvest losses of both sweet potato roots and aerial vine components is significant, there is no information available that will support the design and development of appropriate storage and preservation systems. In this context, the present study was initiated to improve scientific knowledge about sweet potato post-harvest handling. Additionally, the study also seeks to develop a PV ventilated mud storehouse for storage of sweet potato roots under tropical conditions. In study one, airflow resistance of sweet potato aerial vine components was investigated. The influence of different operating parameters such as airflow rate, moisture content and bulk depth at different levels on airflow resistance was analyzed. All the operating parameters were observed to have significant (P < 0.01) effect on airflow resistance. Prediction models were developed and were found to adequately describe the experimental pressure drop data. In study two, the resistance of airflow through unwashed and clean sweet potato roots was investigated. The effect of sweet potato roots shape factor, surface roughness, orientation to airflow, and presence of soil fraction on airflow resistance was also assessed. The pressure drop through unwashed and clean sweet potato roots was observed to increase with higher airflow, bed depth, root grade composition, and presence of soil fraction. The physical properties of the roots were incorporated into a modified Ergun model and compared with a modified Shedd’s model. The modified Ergun model provided the best fit to the experimental data when compared with the modified Shedd’s model. In study three, the effect of sweet potato root size (medium and large), different air velocity and temperature on the cooling/or heating rate and time of individual sweet potato roots were investigated. Also, a simulation model which is based on the fundamental solution of the transient equations was proposed for estimating the cooling and heating time at the centre of sweet potato roots. The results showed that increasing air velocity during cooling and heating significantly (P < 0.05) affects the cooling and heating times. Furthermore, the cooling and heating times were significantly different (P < 0.05) among medium and large size sweet potato roots. Comparison of the simulation results with experimental data confirmed that the transient simulation model can be used to accurately estimate the cooling and heating times of whole sweet potato roots under forced convection conditions. In study four, the performance of charcoal evaporative cooling pad configurations for integration into sweet potato roots storage systems was investigated. The experiments were carried out at different levels of air velocity, water flow rates, and three pad configurations: single layer pad (SLP), double layers pad (DLP) and triple layers pad (TLP) made out of small and large size charcoal particles. The results showed that higher air velocity has tremendous effect on pressure drop. Increasing the water flow rate above the range tested had no practical benefits in terms of cooling. It was observed that DLP and TLD configurations with larger wet surface area for both types of pads provided high cooling efficiencies. In study five, CFD technique in the ANSYS Fluent software was used to simulate airflow distribution in a low-cost mud storehouse. By theoretically investigating different geometries of air inlet, plenum chamber, and outlet as well as its placement using ANSYS Fluent software, an acceptable geometry with uniform air distribution was selected and constructed. Experimental measurements validated the selected design. In study six, the performance of the developed PV ventilated system was investigated. Field measurements showed satisfactory results of the directly coupled PV ventilated system. Furthermore, the option of integrating a low-cost evaporative cooling system into the mud storage structure was also investigated. The results showed a reduction of ambient temperature inside the mud storehouse while relative humidity was enhanced. The ability of the developed storage system to provide and maintain airflow, temperature and relative humidity which are the key parameters for shelf-life extension of sweet potato roots highlight its ability to reduce post-harvest losses at the farmer level, particularly under tropical climate conditions.
Resumo:
Changes in soil sulfur (S) fractions were assessed in oil palm and food garden land use systems developed on forest vegetation in humid tropical areas of Popondetta in northern Province. The study tested a hypothesis that S in food gardens are limiting nutrient factor and are significantly lower than in plantations and forests. Subsistence food gardens are under long-term slash and burn practice of cropping and such practice is expected to accelerate loss of biomass S from the ecosystem. From each land use, surface soil (0–15 cm) samples were characterised and further pseudocomplete fractionated for S. Conversion of forest to oil palm production decreased (p<0.001) soil pH and electrical conductivity values. The reserve S fraction in soil increased significantly (p<0.05) due to oil palm production ( 28 %) and food gardening activity (∼ 54 %). However, plant available SO42--S was below 15 mg kg^(−1) in the food garden soils and foliar samples of sweet potato crop indicating deficiency of plant available S. Soil organic carbon content (OC) was positively and significantly correlated to total S content (r=0.533; p<0.001) among the land use systems. Thus, crop management practices that affect OC status of the soils would potentially affect the S availability in soils. The possible changes in the chemical nature of mineralisable organic S compounds leading to enhanced mineralisation and leaching losses could be the reasons for the deficiency of S in the food garden soils. The results of this study conclude that long-term subsistence food gardening activity enriched top soils with reserve S or total S content at the expense of soluble S fraction. The subsistence cropping practices such as biomass burning in food gardens and reduced fallow periods are apparently threatening food security of oil palm households. Improved soil OC management strategies such as avoiding burning of fallow vegetation, improved fallows, mulching with fallow biomass, use of manures and S containing fertilisers must be promoted to sustain food security in smallholder oil palm system.
Resumo:
In the rural areas of Brazil, a farmer runs his agricultural empire with a fierce hand: he exploits his workers and the land to their limits. Lack of sustainable land management leads to the pollution of rivers, changes in rain patterns, and exhaustion of the soil.