20 resultados para Integrable equations in Physics
Resumo:
We report on the observation of K\alpha\alpha X-rays of Si, produced in collisions of 15-28 MeV Si projectiles with various target atoms in the range Z =6 to 29. Energy shifts of X-rays were measured and are compared with theoretical predictions. Cross section ratios for emission of K\alpha\alpha and K\alpha radiation are given.
Resumo:
Within the quasimolecular (MO) kinematic dipole model we predict a strong dependence of the anisotropy of the MO radiation on the orientation of the heavy ion scattering plane relative to the direction of the photon detection plane.
Resumo:
The main aim of this paper is the development of suitable bases (replacing the power basis x^n (n\in\IN_\le 0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms of series representations extending results given in [16] for the q-case. Furthermore it enables the representation of the Stieltjes function which can be used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in [5], see also [6].
Resumo:
In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle Algorithmen, die eine Lösung solcher Gleichungssysteme finden. Ein Beispiel dafür ist der ElimLin-Algorithmus, der mit Hilfe von linearen Gleichungen das Gleichungssystem iterativ vereinfacht. In der Dissertation wird auf Basis dieses Algorithmus ein neuer Solver für quadratische, dünn besetzte Gleichungssysteme vorgestellt und damit zwei symmetrische Kryptosysteme angegriffen. Dabei sind die Techniken zur Modellierung der Chiffren von entscheidender Bedeutung, so das neue Techniken entwickelt werden, um Kryptosysteme darzustellen. Die Idee für das Modell kommt von Cube-Angriffen. Diese Angriffe sind besonders wirksam gegen Stromchiffren. In der Arbeit werden unterschiedliche Varianten klassifiziert und mögliche Erweiterungen vorgestellt. Das entstandene Modell hingegen, lässt sich auch erfolgreich auf Blockchiffren und auch auf andere Szenarien erweitern. Bei diesen Änderungen muss das Modell nur geringfügig geändert werden.
Resumo:
Wir betrachten zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängi- gen Gebieten, wobei die Bewegung des Gebietsrandes bekannt ist. Die zeitliche Entwicklung des Gebietes wird durch die ALE-Formulierung behandelt, die die Nachteile der klassischen Euler- und Lagrange-Betrachtungsweisen behebt. Die Position des Randes und seine Geschwindigkeit werden dabei so in das Gebietsinnere fortgesetzt, dass starke Gitterdeformationen verhindert werden. Als Zeitdiskretisierungen höherer Ordnung werden stetige Galerkin-Petrov-Verfahren (cGP) und unstetige Galerkin-Verfahren (dG) auf Probleme in zeitabhängigen Gebieten angewendet. Weiterhin werden das C 1 -stetige Galerkin-Petrov-Verfahren und das C 0 -stetige Galerkin- Verfahren vorgestellt. Deren Lösungen lassen sich auch in zeitabhängigen Gebieten durch ein einfaches einheitliches Postprocessing aus der Lösung des cGP-Problems bzw. dG-Problems erhalten. Für Problemstellungen in festen Gebieten und mit zeitlich konstanten Konvektions- und Reaktionstermen werden Stabilitätsresultate sowie optimale Fehlerabschätzungen für die nachbereiteten Lösungen der cGP-Verfahren und der dG-Verfahren angegeben. Für zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten präsentieren wir konservative und nicht-konservative Formulierungen, wobei eine besondere Aufmerksamkeit der Behandlung der Zeitableitung und der Gittergeschwindigkeit gilt. Stabilität und optimale Fehlerschätzungen für die in der Zeit semi-diskretisierten konservativen und nicht-konservativen Formulierungen werden vorgestellt. Abschließend wird das volldiskretisierte Problem betrachtet, wobei eine Finite-Elemente-Methode zur Ortsdiskretisierung der Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten im ALE-Rahmen einbezogen wurde. Darüber hinaus wird eine lokale Projektionsstabilisierung (LPS) eingesetzt, um der Konvektionsdominanz Rechnung zu tragen. Weiterhin wird numerisch untersucht, wie sich die Approximation der Gebietsgeschwindigkeit auf die Genauigkeit der Zeitdiskretisierungsverfahren auswirkt.