21 resultados para Inelastic collision
Resumo:
The extension of the Periodic Table into the range of unknown atomic numbers of above one hundred requires relativistic calculations. The results of the latter are used to indicate probable values for X-ray transition lines which will be useful for identification of the atomic species formed during collision between accelerated ions and the target. If the half-lives of the isotopes are long, then the chemistry of these new species becomes an important question which is reviewed for E110, E 111 and E112. The possible structural chemistry of the elements E108 to E112 is suggested. Finally the effects of solvation on ions of the actinide and superheavy elements have been studied.
Resumo:
The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.
Resumo:
We present a new scheme to solve the time dependent Dirac-Fock-Slater equation (TDDFS) for heavy many electron ion-atom collision systems. Up to now time independent self consistent molecular orbitals have been used to expand the time dependent wavefunction and rather complicated potential coupling matrix elements have been neglected. Our idea is to minimize the potential coupling by using the time dependent electronic density to generate molecular basis functions. We present the first results for 16 MeV S{^16+} on Ar.
Resumo:
The concept of a "Superheavy Quasiatom" is discussed. Radiative transition times are compared with the lifetime of the intermediate system, cross sections are calculated within a two-collision model and induced transitions and their anisotropic emission are discussed. Recent experimental and theoretical results are presented from collision systems obtained with I-beams bombarding various heavy targets, giving combined Z-values between 120 and 145. Results include the energy dependence of the peak structure interpreted as M X-rays from superheavy quasiatoms and the anisotropy of X-ray emission referred to the beam direction. The data are discussed within the models available. These cannot explain the streng emission of anisotropic radiation in the X-ray energy range of quasiatomic M X-rays at small bombarding energies.
Resumo:
To describe the time dependence of an atomic collision system the Dirac equation usually is rewritten in a coupled channel equation. We first discuss part of the approximation used in this approach and the connection of the many particle with the one particle interpretation. The coupled channel equations are solved for the system F{^8+} - Ne using static selfconsistent many electron Dirac-Fock-Slater wavefunctions as basis. The resulting P(b) curves for the creation of a Ne K-hole are in reasonable agreement with the experimental results.
Resumo:
This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.