24 resultados para ION-ACCELERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatomic correlation diagrams are the main basis for the description of heavy-ion collisions. We have constructed the first realistic relativistic many-electron correlation diagrams based on nonrelativistic self-consistent-field, Hartree-Fock calculations of diatomic molecules plus relativistic corrections. We discuss the relativistic influences as well as the many-electron screening effects in the I-Au system with a combined charge of Z = 132 as an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-molecular X-rays observed in heavy ion collisions are interpreted within a relativistic calculation of correlation diagrams using the Dirac-Slater model. A semiquantitative description of noncharacteristic M X rays is given for the system Au-I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na_n ^+ have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na_2 and, observed for the first time, neutral trimer Na_3 photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ramsey-type interferometer is suggested, employing a cold trapped ion and two time-delayed offresonant femtosecond laser pulses. The laser light couples to the molecular polarization anisotropy, inducing rotational wavepacket dynamics. An interferogram is obtained from the delay dependent populations of the final field-free rotational states. Current experimental capabilities for cooling and preparation of the initial state are found to yield an interferogram visibility of more than 80%. The interferograms can be used to determine the polarizability anisotropy with an accuracy of about ±2%, respectively ±5%, provided the uncertainty in the initial populations and measurement errors are confined to within the same limits.