19 resultados para Computer Experiments
Resumo:
In den bundesweit rund 670 anerkannten Werkstätten für behinderte Menschen (WfbM) arbeiten aktuell über 290 000 Menschen mit Behinderung. Rund ein Viertel dieser Einrichtungen bieten auch landwirtschaftliche oder gartenbauliche Arbeitsplätze (`Grüne WfbM´). Die UN-Behindertenrechtskonvention fordert u. a. eine inklusive Teilhabe der Menschen mit Behinderung am Arbeitsleben in Form von Zugangsmöglichkeiten zu sozialversicherungspflichtiger Beschäftigung auf dem allgemeinen Arbeitsmarkt. Gleichzeitig können arbeitswirtschaftlich immer mehr landwirtschaftliche Betriebe aufgrund wachsender Betriebsgrößen nicht mehr allein durch die Unternehmerfamilie geführt werden. Neben der Zuhilfenahme von Dienstleistungsanbietern ist die Suche nach Fremdarbeitskräften zwangsläufig. Neben dem Bedarf an qualifiziertem Fachpersonal werden auch Arbeitskräfte für einfachere, tägliche Routinearbeiten gesucht. Die vorliegende Arbeit begleitet wissenschaftlich ein vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz gefördertes bundesweites Modellvorhaben zur Vernetzung `Grüner WfbM´ mit landwirtschaftlichen Betrieben. Forschungsleitende Fragestellungen sind die betrieblichen Interessen und Voraussetzungen aus Sicht der landwirtschaftlichen Betriebe für die Beschäftigung von Menschen mit Behinderung sowie für bilaterale Kooperationen mit diesen Einrichtungen. Anhand von 44 Betriebsinterviews und unter Anwendung einer qualitativen, rechnerbasierten Fallstudienanalyse zeigen die Ergebnisse eine Vielzahl von Möglichkeiten wirtschaftlich tragfähiger Beschäftigung behinderter Menschen auch in Kernproduktionsprozessen. Unabdingbar dafür sind angepasste Sozialtugenden und ausreichende Arbeitsmotivation auf Arbeitnehmerseite sowie eine offen-innovative und sozial geprägte Grundeinstellung auf Betriebsleitungsseite. Betriebe wünschen sich dauerhafte und verlässliche Arbeitsverhältnisse. Praktika oder gar Experimente kommen für sie eher nicht in Frage. Weniger als 10% aller `Grünen WfbM´ kooperieren bilateral mit umliegenden Betrieben. Dort wo keine Kontakte bestehen, sind Vorbehalte seitens der Landwirte hinsichtlich Wettbewerbsverzerrungen durch vermeintliche Sozialsubventionierung bzw. im Wettbewerb um Ressourcen (z.B. Land) gegenüber den Einrichtungen anzutreffen. Kooperationen fördern gegenseitiges Verständnis und sind so auch idealer `Türöffner´ für Beschäftigungsverhältnisse.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit den Einflüssen visuell wahrgenommener Bewegungsmerkmale auf die Handlungssteuerung eines Beobachters. Im speziellen geht es darum, wie die Bewegungsrichtung und die Bewegungsgeschwindigkeit als aufgabenirrelevante Reize die Ausführung von motorischen Reaktionen auf Farbreize beeinflussen und dabei schnellere bzw. verzögerte Reaktionszeiten bewirken. Bisherige Studien dazu waren auf lineare Bewegungen (von rechts nach links und umgekehrt) und sehr einfache Reizumgebungen (Bewegungen einfacher geometrischer Symbole, Punktwolken, Lichtpunktläufer etc.) begrenzt (z.B. Ehrenstein, 1994; Bosbach, 2004, Wittfoth, Buck, Fahle & Herrmann, 2006). In der vorliegenden Dissertation wurde die Gültigkeit dieser Befunde für Dreh- und Tiefenbewegungen sowie komplexe Bewegungsformen (menschliche Bewegungsabläufe im Sport) erweitert, theoretisch aufgearbeitet sowie in einer Serie von sechs Reaktionszeitexperimenten mittels Simon-Paradigma empirisch überprüft. Allen Experimenten war gemeinsam, dass Versuchspersonen an einem Computermonitor auf einen Farbwechsel innerhalb des dynamischen visuellen Reizes durch einen Tastendruck (links, rechts, proximal oder distal positionierte Taste) reagieren sollten, wobei die Geschwindigkeit und die Richtung der Bewegungen für die Reaktionen irrelevant waren. Zum Einfluss von Drehbewegungen bei geometrischen Symbolen (Exp. 1 und 1a) sowie bei menschlichen Drehbewegungen (Exp. 2) zeigen die Ergebnisse, dass Probanden signifikant schneller reagieren, wenn die Richtungsinformationen einer Drehbewegung kompatibel zu den räumlichen Merkmalen der geforderten Tastenreaktion sind. Der Komplexitätsgrad des visuellen Ereignisses spielt dabei keine Rolle. Für die kognitive Verarbeitung des Bewegungsreizes stellt nicht der Drehsinn, sondern die relative Bewegungsrichtung oberhalb und unterhalb der Drehachse das entscheidende räumliche Kriterium dar. Zum Einfluss räumlicher Tiefenbewegungen einer Kugel (Exp. 3) und einer gehenden Person (Exp. 4) belegen unsere Befunde, dass Probanden signifikant schneller reagieren, wenn sich der Reiz auf den Beobachter zu bewegt und ein proximaler gegenüber einem distalen Tastendruck gefordert ist sowie umgekehrt. Auch hier spielt der Komplexitätsgrad des visuellen Ereignisses keine Rolle. In beiden Experimenten führt die Wahrnehmung der Bewegungsrichtung zu einer Handlungsinduktion, die im kompatiblen Fall eine schnelle und im inkompatiblen Fall eine verzögerte Handlungsausführung bewirkt. In den Experimenten 5 und 6 wurden die Einflüsse von wahrgenommenen menschlichen Laufbewegungen (freies Laufen vs. Laufbandlaufen) untersucht, die mit und ohne eine Positionsveränderung erfolgten. Dabei zeigte sich, dass unabhängig von der Positionsveränderung die Laufgeschwindigkeit zu keiner Modulation des richtungsbasierten Simon Effekts führt. Zusammenfassend lassen sich die Studienergebnisse gut in effektbasierte Konzepte zur Handlungssteuerung (z.B. die Theorie der Ereigniskodierung von Hommel et al., 2001) einordnen. Weitere Untersuchungen sind nötig, um diese Ergebnisse auf großmotorische Reaktionen und Displays, die stärker an visuell wahrnehmbaren Ereignissen des Sports angelehnt sind, zu übertragen.