17 resultados para Autler-Townes splitting


Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the Institute of Structural Engineering of the Faculty of Civil Engineering, Kassel University, series tests of slab-column connection were carried out, subjected to concentrated punching load. The effects of steel fiber content, concrete compressive strength, tension reinforcement ratio, size effect, and yield stress of tension reinforcement were studied by testing a total of six UHPC slabs and one normal strength concrete slab. Based on experimental results; all the tested slabs failed in punching shear as a type of failure, except the UHPC slab without steel fiber which failed due to splitting of concrete cover. The post ultimate load-deformation behavior of UHPC slabs subjected to punching load shows harmonic behavior of three stages; first, drop of load-deflection curve after reaching maximum load, second, resistance of both steel fibers and tension reinforcement, and third, pure tension reinforcement resistance. The first shear crack of UHPC slabs starts to open at a load higher than that of normal strength concrete slabs. Typically, the diameter of the punching cone for UHPC slabs on the tension surface is larger than that of NSC slabs and the location of critical shear crack is far away from the face of the column. The angle of punching cone for NSC slabs is larger than that of UHPC slabs. For UHPC slabs, the critical perimeter is proposed and located at 2.5d from the face of the column. The final shape of the punching cone is completed after the tension reinforcement starts to yield and the column stub starts to penetrate through the slab. A numerical model using Finite Element Analysis (FEA) for UHPC slabs is presented. Also some variables effect on punching shear is demonstrated by a parametric study. A design equation for UHPC slabs under punching load is presented and shown to be applicable for a wide range of parametric variations; in the ranges between 40 mm to 300 mm in slab thickness, 0.1 % to 2.9 % in tension reinforcement ratio, 150 MPa to 250 MPa in compressive strength of concrete and 0.1 % to 2 % steel fiber content. The proposed design equation of UHPC slabs is modified to include HSC and NSC slabs without steel fiber, and it is checked with the test results from earlier researches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since dwarf napiergrass (Pennisetum purpureum Schumach.) must be propagated vegetatively due to lack of viable seeds, root splitting and stem cuttings are generally used to obtain true-to-type plant populations. These ordinary methods are laborious and costly, and are the greatest barriers for expanding the cultivation area of this crop. The objectives of this research were to develop nursery production of dwarf napiergrass in cell trays and to compare the efficiency of mechanical versus manual methods for cell-tray propagation and field transplanting. After defoliation of herbage either by a sickle (manually) or hand-mowing machine, every potential aerial tiller bud was cut to a single one for transplanting into cell trays as stem cuttings and placed in a glasshouse over winter. The following June, nursery plants were trimmed to a 25–cm length and transplanted in an experimental field (sandy soil) with 20,000 plants ha^(−1) either by shovel (manually) or Welsh onion planter. Labour time was recorded for each process. The manual defoliation of plants required 44% more labour time for preparing the stem cuttings (0.73 person-min. stemcutting^(−1)) compared to using hand-mowing machinery (0.51 person-min. stem-cutting^(−1)). In contrast, labour time for transplanting required an extra 0.30 person-min. m^(−2) (14%) using the machinery compared to manual transplanting, possibly due to the limited plot size for machinery operation. The transplanting method had no significant effect on plant establishment or plant growth, except for herbage yield 110 days after planting. Defoliation of herbage by machinery, production using a cell-tray nursery and mechanical transplanting reduced the labour intensity of dwarf napiergrass propagation.