19 resultados para Agricultural literature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparing the experiences of selected Latin America and the Caribbean countries and their trajectories over the past 15 years offers rich insights into the dynamics and causes for not meeting the 2015 MDGs. They also offer clues for post-MDG strategies. Central to achieving sustainable growth are government policies able to support small and medium-sized farms and peasants, as they are crucial for the achievement of several goals, centrally: to achieve food security; to provide a sound and stable rural environment able to resist external (financial) shocks; to secure healthy food; to secure local food; and to protect vibrant and culturally rich local communities. This paper analyses and compares the most successful government policies to the least successful policies carried out over the last 15 years in selected Latin American and Caribbean countries and based on this analysis, offers strategies for more promising post-MDG politics, able to reduce poverty, reduce inequality, fight back informality, and achieve more decent work in poor countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is an attempt to map the global land acquisitions with a focus on Indian MNCs in acquiring overseas land for agricultural purposes. It tries to outline the contemporary political economy of capital accumulation at the global level, especially, in the emerging developing economies like India and China, where the emergence of a new capitalist class has engaged itself into acquisition of land and control of other natural resources in Africa, Latin America, Eastern Europe and South East Asia, for example, water and other minerals to secure itself from the eventual losses of ongoing economic crisis and to earn profit from the volatile agricultural commodity markets. This sway of control of resources by the MNCs has got paramount State support under the helm of neoliberal policies. The paper provides scale of overseas land acquisitions at the current juncture and tries to highlight its causes and the major implications associated with it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convergence of factors has made food security one of the most important global issues. It has been the core concept of the Milan Expo 2015, whose title, Feeding the Planet, Energy for Life, embodied the challenge to provide the world’s growing population with a sustainable, secure supply of safe, nutritious, and affordable high-quality food using less land with lower inputs. Meeting the food security agenda using current agricultural production techniques cannot be achieved without serious degradation to the environment, including soil degradation, loss of biodiversity and climate change. Organic farming is seen as a solution to the challenge of sustainable food production, as it provides more nutritious food, with less or no pesticide residues and lower use of inputs. A limit of organic farming is its restricted capability of producing food compared to conventional agriculture, thus being an inefficient approach to food production and to food security. The authors maintain, on the basis of a scientific literature review, that organic soils tend to retain the physical, chemical and biological properties over the long term, while maintaining stable levels of productivity and thereby ensuring long-term food production and safety. Furthermore, the productivity gap of organic crops may be worked out by further investment in research and in particular into diversification techniques. Moreover, strong scientific evidence indicates that organic agricultural systems deliver greater ecosystem services and social benefits.