25 resultados para Ab-initio
Resumo:
Electronic factors in the volume isotope shift have been calculated in an ab initio way with the relativistic Dirac-Fock method for a number of different optical single/and two-photon transitions in Au I. The agreement with a semi-empirical method is within 10% for the resonance transition. For this one and a few other transitions the effect of core excitation has been analyzed with the Multi-configuration Dirac-Fock method as well, and it was found to reduce the electronic factor in the order of 5 %.
Resumo:
Non-relativistic Hartree-Fock-Slater and relativistic Dirac-Slater self-consistent orbital models are applied for the analysis of the electronic structure of the chalcogen hexafluorides: SF_6, SeF_6, TeF_6 and PoF_6. The molecular eigenfunctions and eigenvalues are generated using the discrete variational method (DVM) with numerical basis functions. The results obtained for SF_6 are compared with other ab initio calculations. Information about relativistic level shifts and spin-orbit splitting has been obtained by comparison between the non-relativistic and relativistic results.
Resumo:
Femtosecond reaction dynamics of OClO in a supersonic molecular beam are reported. The system is excited to the A^2A_2 state with a femtosecond pulse, covering a range of excitation in the symmetric stretch between v_1 = 17 to v_1 = 11 (308-352 nm). A time-delayed femtosecond probe pulse ionizes the OClO, and OClO^+ is detected. This ion has not been observed in previous experiments because of its ultrafast fragmentation. Transients are reported for the mass of the parent OClO as well as the mass of the ClO. Apparent biexponential decays are observed and related to the fragmentation dynamics: OClO+hv \rightarrow (OClO)^{(++)*} \rightarrow ClO+O \rightarrow Cl+O_2. Clusters of OClO with water (OClO)_n (H_2 0)_m with n from 1 to 3 and m from 0 to 3 are also observed. The dynamics of the fragmentation reveal the nuclear motions and the electronic coupling between surfaces. The time scale for bond breakage is in the range of 300-500 fs, depending on v_1; surface crossing to form new intermediates is a pathway for the two channels of fragmentation: ClO+O (primary) and Cl+O_2 (minor). Comparisons with results of ab initio calculations are made.
Resumo:
A femtosecond-laser pulse can induce ultrafast nonthermal melting of various materials along pathways that are inaccessible under thermodynamic conditions, but it is not known whether there is any structural modification at fluences just below the melting threshold. Here, we show for silicon that in this regime the room-temperature phonons become thermally squeezed, which is a process that has not been reported before in this material. We find that the origin of this effect is the sudden femtosecond-laser-induced softening of interatomic bonds, which can also be described in terms of a modification of the potential energy surface. We further find in ab initio molecular-dynamics simulations on laser-excited potential energy surfaces that the atoms move in the same directions during the first stages of nonthermal melting and thermal phonon squeezing. Our results demonstrate how femtosecond-laser-induced coherent fluctuations precurse complete atomic disordering as a function of fluence. The common underlying bond-softening mechanism indicates that this relation between thermal squeezing and nonthermal melting is not material specific.
Resumo:
Mit der Methode der photoneninduzierten Fluoreszenzspektroskopie (PIFS) wurden spektro- und polarimetrische Fluoreszenzspektren des Xenon-Atoms und der NO- und CO-Moleküle untersucht. Im Bereich der Atomphysik konnten für das Xenon-Atom eindeutige Fluoreszenzkaskadeneffekte vom sichtbaren (VIS) in den vakuumultravioleten (VUV) Spektralbereich beobachtet werden. Das untersuchte Energieintervall zeichnete sich durch 15 gefundene Resonanzen entlang der Anregungsenergieachse der Synchrotronphotonen aus, die auf doppeltangeregte nln′l′-Resonanzen zurückgeführt werden konnten. Im Bereich der Molekülphysik wurden Messdaten der NO A 1Π → X 1Σ+- und CO A 2Π → X 2Σ+-Fluoreszenz nach der Anregung der 1s−1 → 2π-Resonanz untersucht. Durch polarimetrische Untersuchungen konnten in beiden Fällen die Winkelanisotropieparameter β(ω) der Fluoreszenz ermittelt werden und mit ab initio Berechnungen mit unterschiedlichen theoretischen Näherungen vergleichen werden. Der Einfluss quantenmechanischer Interferenzeffekte (LVI und ESI) auf die Winkelanisotropieparameter wurde aufgezeigt. Im Falle des NO- und des CO-Moleküls konnte eine sehr gute Übereinstimmung zwischen der Theorie und dem Experiment nachgewiesen werden. Durch Pioniermessungen an Diamantoiden konnte erstmalig dispergierte Lumineszenz der kleinsten Vertreter der Nanodiamanten nachgewiesen werden. Diese Messungen legen eine Grundlage für eine systematische Erforschung der Nanokristalle zugrunde.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.
Resumo:
Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.
Resumo:
In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.