292 resultados para Physik
Resumo:
Self-consistent relativistic Dirac-Hartree-Fock calculations have been made of some lowlying electronic energies for the atoms of all elements in ground-state ds^2 electron configurations. The results indicate that, contrary to some previous estimates, the ground electronic state of atomic Lr could be in either the 5f^14 6d7s^2 or the 5f^14 7p 7s^2 electron configuration. The separation between the lowest energy level of the 5f^14 6d7s^2 configuration and the lowest energy level of the 5f^14 7p7s^2 configuration is estimated to be (0 ± 3) x 10^3 cm^-1 for atomic Lr.
Resumo:
We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.
Resumo:
Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are used to analyze the volume isotope shifts of the resonance transitions in the group-IIa and -IIb elements as well as in Yb. This is done together with a review of the isotope shift theory, including a critical evaluation and comparison of the semiempirical calculation of volume isotope shifts commonly used today. Electronic factors F_i, proportional to differences of electronic densities over the nuclear volume, are discussed within various approximations and compared with experimental results.
Resumo:
Measurements of the Auger decay of beam-foil excited Be II and Be I levels are reported along with a proposed assignment of the experimental spectra. The Li I, Be II and Be III (1s 2s^2) ^2 S \rightarrow (1s^2 2s)^2 S Auger transitions as presented in this letter represents the first observation of such states in positive ions with Z \le 5.
Resumo:
Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Calculation of the hyperfine structure transition energy and lifetime in the one-electron Bi^82+ ion
Resumo:
We calculate the energy and lifetime of the ground state hyperfine structure transition in one-electron Bi^82+ . The influence of various distributions of the magnetic moment and the electric charge in the nucleus ^209_83 Bi on energy and lifetime is studied.
Resumo:
We report on the observation of K\alpha\alpha X-rays of Si, produced in collisions of 15-28 MeV Si projectiles with various target atoms in the range Z =6 to 29. Energy shifts of X-rays were measured and are compared with theoretical predictions. Cross section ratios for emission of K\alpha\alpha and K\alpha radiation are given.
Resumo:
KLL-Auger transitions of the three electron system in Ne have been recorded in a coincidence experiment frec of contaminants from other systems. Energies as well as intensities are compared with calculated values.
Resumo:
Within the quasimolecular (MO) kinematic dipole model we predict a strong dependence of the anisotropy of the MO radiation on the orientation of the heavy ion scattering plane relative to the direction of the photon detection plane.
Resumo:
The extension of the Periodic Table into the range of unknown atomic numbers of above one hundred requires relativistic calculations. The results of the latter are used to indicate probable values for X-ray transition lines which will be useful for identification of the atomic species formed during collision between accelerated ions and the target. If the half-lives of the isotopes are long, then the chemistry of these new species becomes an important question which is reviewed for E110, E 111 and E112. The possible structural chemistry of the elements E108 to E112 is suggested. Finally the effects of solvation on ions of the actinide and superheavy elements have been studied.
Resumo:
Relativistic molecular calculations within the Dirac-Slater scheme have been used in a study of the electronic structure of 6d-metal superheavy hexafluorides. The theoretical results are compared with calculations and measurements of the homolog 4d- and 5d-metal hexafluorides. Large spin-orbit splitting dominates the electronic structure and even has the same order of magnitude as the crystal-field splitting for the valence electrons for the superheavy molecules. Ionization energies have been calculated using a transition state procedure.
Resumo:
The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the F = 4 and F = 5 hyperfine levels of the ground state of hydrogenlike ^209 Bi^82+ was measured to be \lamda_0 = 243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited F = 5 sublevel was determined to be \tau_0 = 0.351(16) ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.
Resumo:
Using new relativistic molecular calculations within the Dirac-Slater scheme it is now feasible to study theoretically molecules containing superheavy elements. This opens a new era for the prediction of the physics and chemistry of superheavy elements. As an example we present the results for (_110 X) F_6, where it is shown that relativistic effects are nearly of the same order of magnitude as the crystal-field splitting.