178 resultados para 510
Resumo:
In connection with the (revived) demand for considering applications in the teaching of mathematics, various schemata or lists of criteria have been developed since the end of the sixties, which set up requirements about closeness to the real world or about the type of mathematics being used, and which have made it possible to analyze the available applications in their light. After having stated the problem (in section 1), we present (in section 2) a sketch of some of the best known of these and of some earlier schemata, although we are not aiming for a complete picture. Then (in section 3) we distinguish among different dimensions.in the analysis of applications. With this as a basis, we develop (in section 4) our own suggestion for categorizing types of applications and conceptions for an application-oriented mathematics instruction. Then (in section 5) we illustrate our schemata by some examples of performed evaluations. Finally (in section 6), we present some preliminary first results of the analysis of teaching conceptions.
Resumo:
We consider the resolvent problem for the scalar Oseen equation in the whole space R^3. We show that for small values of the resolvent parameter it is impossible to obtain an L^2-estimate analogous to the one which is valid for the Stokes resolvent, even if the resolvent parameter has positive real part.
Resumo:
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________
Resumo:
Die Unterrichtsschritte, die im Videoband nicht gezeigt werden konnten, werden in diesem Beiheft erläutert: Nach einer "Beschreibung des Themas" wird die "Ausarbeitung der drei Lernsequenzen" am Beispiel des Unterrichts in einer kaufmännischen Berufsschule, einer Berufsfachschule Gesundheitswesen und einer technischen Fachoberschule ausführlich dargestellt.
Resumo:
Unter dem Namen SINUS werden seit über 10 Jahren bundesweit erfolgreiche Projekte zur Weiterentwicklung des mathematisch-naturwissenschaftlichen Unterrichts durchgeführt. Das Projekt SINUS-Quest, dessen Abschlussbericht hier vorgelegt wird, entstand aus dem Anliegen der Projektleitung von SINUS-Hessen, eine eigene Evaluation des hessischen Projektes SINUS-Transfer (2005 – 2007) durchzuführen. Die Evaluation sollte nicht nur summativ sein, sondern den SINUS-Prozess selber mit beeinflussen. Dazu sollten schulspezifische Befragungsergebnisse an die einzelnen Schulen zurückgemeldet werden, und zwar unter Bezugnahme auf den hessischen Durchschnitt, um die Stärken und den Entwicklungsbedarf einzelner Schulteams gezielt identifizieren und bei der Weiterentwicklung berücksichtigen zu können. Im Jahre 2005 wurde die Projektgruppe SINUS-Quest für die Konzipierung und die Durchführung des Evaluationsprojektes gegründet, und zwar als Kooperationsprojekt zwischen der SINUS-Projektleitung, dem Institut für Qualitätsentwicklung (IQ) in Wiesbaden, vertreten durch die Arbeitseinheit für „Empirische Fundierung der Schulentwicklung und Qualitätssicherung der Evaluation“ und der mathematikdidaktischen Arbeitsgruppe von Prof. Dr. Rolf Biehler an der Universität Kassel. An der Vorbefragung haben ca. 2000 hessische Lehrerinnen und Lehrer teilgenommen, an der Nachbefragung ca. 1200. Ihnen allen sei an dieser Stelle für die aktive Mitarbeit herzlich gedankt. Wir bedanken uns besonders herzlich bei den Set-Koordinatoren und Koordinatorinnen und den SINUS-Schulprojektleitungen, ohne die der sehr gute Rücklauf unserer Fragebögen nicht zustande gekommen wäre. Ein herzlicher Dank geht auch an das Leibniz-Institut für die Pädagogik der Naturwissenschaften (IPN) in Kiel, das als SINUS-Projektträger SINUS-Quest finanziell gefördert hat. Kassel, im September 2009 Rolf Biehler, Pascal Fischer, Christoph Maitzen, Carmen Maxara, Tanja Nieder
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
In der Mathematikdidaktik gibt es die weit verbreitete Auffassung, durch die Verwendung von Simulationen Lernprozesse zu unterstützen. Dies hat mich im Rahmen meiner Dissertation dazu bewogen, erstens eine Werkzeuganalyse des Simulationspotentials der Software Fathom durchzuführen und zweitens exemplarische Analysen dazu, wie Lernende mit der Software arbeiten. Bei der Werkzeuganalyse standen vor allem folgende zwei Fragen im Mittelpunkt: Was bietet die Software an Simulationspotential? Wie gut und leicht lassen sich Zufallsexperimente in Fathom realisieren? Dieses Wissen ist für die praktische Anwendung der Software und die diagnostische Kompetenz der Lehrkräfte, die Schüler bei der Arbeit mit der Software unterstützen wollen, essentiell. Mit dieser Werkzeuganalyse wurde ein allgemeineres Instrument entwickelt, mit dem man das Simulationspotential auch anderer Werkzeugsoftware wie Excel, Tinkerplots oder den TI-Nspire systematisch analysieren könnte. Im zweiten Teil werden die Ergebnisse einer Fallstudie zur Kompetenz von Studierenden beim Bearbeiten von stochastischen Simulations- und Modellierungsproblemen vorgestellt. Die insgesamt aufwendige Analyse von Mikroprozessen macht sehr viel relevante und wichtige Details im Umgang von Studierenden mit Simulationsaufgaben erkennbar. Auch ist als Ergebnis der Studie nicht nur einfach ein differenziertes Bild der Kompetenzen von Studierenden anzusehen. Vielmehr liegt ein wesentlicher Beitrag auch in der Konzeptualisierung unterschiedlicher Kompetenzen und ihrer Wechselwirkung, wie sie bei der Bearbeitung von mathematischen Aufgaben mit dem Computer auftreten.
Resumo:
KAAD (Katholischer Akademischer Ausländer-Dienst)
Resumo:
In der Anwendung treten häufig Differentialgleichungssysteme auf, deren Komponenten über das Lösen mit einer vorgegeben Genauigkeit hinaus Anforderungen an die, zur Näherung verwendeten, numerischen Verfahren stellen. Die Arbeit widmet sich hierbei den beiden Forderungen 1. Erhaltung der Positivität aller positiven Größen (z.B. Massen, Konzentrationen, Energie) und 2. Erhaltung der Masse in abgeschlossenen Systemen. Ausgehend von einem komplexen ökologischen 2D Modell zur Beschreibung von Algendynamiken in flachen Gewässern auf Grund der verfügbaren Phosphorvorkommen wird ein problemangepasstes Finite-Volumen-Verfahren entwickelt. Den in diesem Rahmen auftauchenden gewöhnlichen Differentialgleichungssystemen wird spezielle Aufmerksamkeit geschenkt. Es werden die bestehenden Begriffe auf eine gemeinsame formale Basis gestellt und die bestehenden Verfahren (Bruggeman und modifizierte Patankar Ansätze) mit Hilfe dieser vereinheitlichten Basis formuliert. Anschließend werden die diesen Ansätzen jeweils eigenen Schwierigkeiten und Einschränkungen (Ordnungsschranke von zwei, Erhaltung der Konservativität nur für Gleichungen mit einfacher Struktur, nicht für steife Systeme geeignet) betrachtet. Danach werden zwei Verfahrensverallgemeinerungen des modifizierten Patankar Euler Verfahrens präsentiert, welche jeweils eine der bestehenden Schwächen aufhebt. 1. Das extrapolierte mod. Pat. Euler Verfahren ermöglicht in Abhängigkeit des zu Grunde liegenden Problems die Erzeugung von Näherungen beliebig hoher Ordnung. 2. Das verallgemeinerte mod. Pat. Euler Verfahren erlaubt den Erhalt der Masse auch für komplexe Strukturen. Anschließend befasst sich die Arbeit mit der Vorstellung des verwendeten FVV, einer angepassten Form der 2D DLR Taucodes. Im weiteren Verlauf werden sämtliche theoretischen Aussagen zu den Verfahren an Hand entsprechend gewählter praktischer Testfälle demonstriert. Abschließend wird die Wirksamkeit des Gesamtverfahrens in seiner Anwendung auf das Algendynamikmodell vorgeführt.
Resumo:
The method of Least Squares is due to Carl Friedrich Gauss. The Gram-Schmidt orthogonalization method is of much younger date. A method for solving Least Squares Problems is developed which automatically results in the appearance of the Gram-Schmidt orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least Squares Problems.
Resumo:
In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.
Resumo:
The main aim of this paper is the development of suitable bases (replacing the power basis x^n (n\in\IN_\le 0) which enable the direct series representation of orthogonal polynomial systems on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the first of which allows to write solutions of arbitrary divided-difference equations in terms of series representations extending results given in [16] for the q-case. Furthermore it enables the representation of the Stieltjes function which can be used to prove the equivalence between the Pearson equation for a given linear functional and the Riccati equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore, we present a second basis, which shares several relevant properties with the first one. This basis enables to generate the defining representation of the Askey-Wilson polynomials directly from their divided-difference equation. For this purpose the divided-difference equation must be rewritten in terms of suitable divided-difference operators developed in [5], see also [6].
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.