9 resultados para wood-decaying fungi
em Cochin University of Science
Resumo:
Rubber solutions were prepared and used for bonding wood pieces. The effect of the variation of chlorinated natural rubber (CNR) and phenolformaldehyde (PF) resin in the adhesive solutions on lap shear strength was determined. Natural rubber and neoprene-based adhesive solutions were compared for their lap shear strength. The storage stability of the adhesive prepared was determined. The change in lap shear strength before and after being placed in cold water, hot water, acid, and alkali was tested. The bonding character of these adhesives was compared with different commercially available solution adhesives. The room-temperature aging resistance of wood joints was also determined. In all the studies, the adhesive prepared in the laboratory was found to be superior compared to the commercial adhesives.
Resumo:
This study presents the L-Glutaminase Production by Marine Fungi. Enzymes are involved in all aspects of biochemical conversion from the simple enzyme or fermentation conversion to the complex techniques in genetic engineering. Enzyme industry is one among the major industries of the world and there exists a great market for enzymes in general. Food industry is recognized as the largest consumer for commercial enzymes (Lon sane and Ramakrishna, 1989). In industry, enzymes are frequently used for process improvement, for instance to enable the utilization of new types of raw materials or for improving the physical properties of a material so that it can be more easily processed. They are the focal point of biotechnological processe. The marine biosphere is one of the richest of the earth's innumerable habitats, yet is one of the least well characterized. The marine biosphere covers more than two third of the world's surface, our knowledge of marine microorganisms, in particular fungi, is still very limited (Molitoris and Schumann, 1986). The results obtained in the present study the following conclusions are drawn. Beauveria bassiana isolated form marine sediment has immense potential as an Industrial organism for production of L-glutaminase as an extracellular enzyme employing either submerged fermentnation or solid state fermentation
Resumo:
Faculty of Marine Sciences, Cochin University of Science and Technology
Resumo:
Faculty of Marine Sciences, Cochin University of Science and Technology
Resumo:
The research work which was carried out to characterization of wastes from natural rubber and rubber wood processing industries and their utilization for biomethanation. Environmental contamination is an inevitable consequence of human activity. The liquid and solid wastes from natural rubber based industries were: characterized and their use for the production of biogas investigated with a view to conserve conventional energy, and to mitigate environmental degradation.Rubber tree (flevea brasiliensis Muell. Arg.), is the most important commercial source of natural rubber and in india. Recently, pollution from the rubber processing factories has become very serious due to the introduction of modern methods and centralized group processing practices.The possibility of the use of spent slurry as organic manure is discussed.l0 percent level of PSD, the activity of cellulolytic, acid producing,proteolytic, lipolytic and methanogenic bacteria were more in the middle stage of methanogenesis.the liquid wastes from rubber processing used as diluents in combination with PSD, SPE promoted more biogas production with high methane content in the gas.The factors that favour methane production like TS, VS, cellulose and hemicellulose degradation were favoured in this treatment which led to higher methane biogenesis.The results further highlight ways and means to use agricultural wastes as alternative sources of energy.
Resumo:
In this thesis an attempt is made to explore the potential of marine fungi for the production of chitinolytic enzymes and to recognize the ability to hydrolyse native chitin through submerged as well as solid substrate fermentation culture conditions, using wheat bran and shellfish processing waste such as ‘prawn waste’ as solid substrates. Attempt was made to isolate a potential chitinase producing fungus from marine environment and to develop an ideal bioprocess for the production ofchitolytic enzymes.Present study indicate scope for utilization of B. bassiana for industrial production of chitinase using prawn waste as solid substrate employing solid substrate fermentation.
Resumo:
Shrimp grow out systems under zero water exchange mode demand constant remediation of total ammonia nitrogen (TAN) andNO2 −–Nto protect the crop. To address this issue, aninexpensive and user-friendly technology using immobilized nitrifying bacterial consortia (NBC) as bioaugmentors has been developed and proposed for adoption in shrimp culture systems. Indigenous NBC stored at 4 °C were activated at room temperature (28 °C) and cultured in a 2 L bench top fermentor. The consortia, after enumeration by epifluorescence microscopy,were immobilized on delignifiedwood particles of a soft wood tree Ailantus altissima (300–1500 μm) having a surface area of 1.87m2 g−1. Selection of wood particle as substratumwas based on adsorption of NBC on to the particles, biofilm formation, and their subsequent nitrification potential. The immobilization could be achievedwithin 72 h with an initial cell density of 1×105 cells mL−1. On experimenting with the lowest dosage of 0.2 g (wet weight) immobilized NBC in 20 L seawater, a TAN removal rate of 2.4 mg L−1 within three days was observed. An NBC immobilization device could be developed for on site generation of the bioaugmentor preparation as per requirement. The product of immobilization never exhibited lag phase when transferred to fresh medium. The extent of nitrification in a simulated systemwas two times the rate observed in the control systems suggesting the efficacy in real life situations. The products of nitrification in all experiments were undetectable due to denitrifying potency, whichmade the NBC an ideal option for biological nitrogen removal. The immobilized NBC thus generated has been named TANOX (Total Ammonia Nitrogen Oxidizer)
Resumo:
In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries