122 resultados para wideband antenna

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band are presented. The proposed low profile antenna of dimensions 15 x 14.5 x 1.6 mm offers 18.6% bandwidth and an average gain of~5 dBi. The antenna can be excited directly using a 50 coaxial probe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band is presented. The proposed low profile antenna of dimensions 15 x 14.5 x 1.6 mm offers 18.6% bandwidth and an average gain of -5 dBi. The antenna can be excited directly using a 50 coaxial probe

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An asymmetric coplanar strip-fed uniplanar antenna for wideband applications is presented. The resulting antenna offers a 2:1 VSWR bandwidth greater than 100% from 1.58 to 5.48 GHz covering the DCS/PCS/IEEE 802.11a/WiMAX bands. The antenna has an overall dimension of 44 × 35 mm2 when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The design equation is also presented in this article. The antenna exhibits good radiation characteristics and moderate gain in the entire operating band.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design of a compact microstrip-fed ultra-wideband antenna suitable for USB dongle and other such space constraint applications is presented. The structure consists of a pentagonal monopole element and a modified ground plane that gives an impedance bandwidth from 2.8 to 12 GHz. Radiation patterns are stable and omni-directional throughout the band with an average gain of 2.84 dBi. The antenna occupies only 11 × 30 mm2 on FR4 substrate with permittivity 4.4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A compact, planar, wideband antenna designed by modifying the coplanar waveguide is presented in this letter. The proposed antenna finds a wide range of applications including advanced wireless systems (AWS), DCS-1800, DCS-1900/PCS/PHS, WiBro, BlueTooth/WLAN/WiBree/ZigBee, DMB, Global Star Satellite Phones, and digital cordless phones. Wide bandwidth > 75% centered at 2.50 GHz, quasi-omnidirectional radiation coverage along with moderate gain and efficiency are the salient features of the antenna. A prototype fabricated on a substrate with dielectric constant 4.4 and thickness 1.6 mm occupies an area of (31times 64) mm2. Details of antenna design and discussions on the effect of various antenna parameters on the radiation characteristics are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antennas are indispensable component of any wireless communication device. An antenna is a transducer between the transmitter and the free space waves and vice versa. They efficiently transfer electromagnetic energy from a transmission line into free space. But the present day communication applications require compact and ultra wide band designs which cannot be catered by simple microstrip based designs. PIFAs have solved the problem to some extend, but the field of antennas needs more innovative designs In this thesis the design and development of compact planner antenna are presented. Emphasis is given to the design of the feed as well as the radiator resulting in simple compact uniplanar geometries. The Asymmetric coplanar feed used to excite the antennas is found to be a suitable choice for feeding compact antennas.The main objectives of the study are the design of compact single, dual and multi band antennas with uniplanar structure and extension of the design for practical GSM/WLAN applications and Ultra compact antennas using the above techniques and extension of the design to antennas for practical applications like RFID/DVB-H. All the above objectives are thoroughly studied. Antennas with ultra compact dimensions are obtained as a result of the study. Simple equations are provided to design antennas with the required characteristics. The design equations are verified by designing different antennas for different applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An electromagnetically coupled T-shaped microstrip feed used to enhance the impedance bandwidth of a rectangular microstrip antenna is reported. The proposed antenna offers a 2:1 VSWR bandwidth of -36% with an increase in gain of 0.8 dB

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical analysis of a symmetric T-shaped rnicrostripfed rectangular microstrip antenna using the finite-difference titnedoniain (FDTD) method is presented in this paper. The resonant frequency, return loss, impedance bandwidth, and radiation patterns are predicted and are in good agreement with the measured results

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the outcome of the experimental studies performed on L-strip fed compact rectangular microstrip antenna. The effect of the feed parameters upon the characteristics of the antenna is studied in detail. The antenna offers an impedance bandwidth of nearly 20% and is suitable for broadband applications

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A broadband cylindrical dielectric resonator antenna (DRA) energized with an L-strip feed is presented The novel exciting technique achieves a 2:1 VSWR bandwidth of 18%. The variation of bandwidth for different feed parameters is also studied

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we introduce a novel feeding technique for bandwidth enhancement of a rectangular microstrip antenna This antenna offers an impedance bandwidth of 22% without degrading the effciencv. The effect of the feed parameters upon patch characteristics such as resonant frequency, impedance bandwidth, and radiation pattern are studied in detail. The experimental results are verified using the FDTD results

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the advantages of using L-shaped microviij) feed to e.tcite a rectangular dielectric resonator cuuenna (DRA) by elemanagnetic coupling are presented. This feeding technique enhances the hardsvidth and gain of the antenna without affecting its size. The experimental re srdts are validated using Fidelity software based on the finitedifference tine-domain (FDTD) method

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple electromagnetically coupled wideband printed microstrip antenna having a 2:1 VSWR bandwidth of 38% covering the 5.2/5.8-GHz WLAN, HIPERLAN2, and HiSWANa communication bands is presented. The large bandwidth is obtained by adding a rectangular metal strip on a slotted square microstrip antenna. The antenna occupies an overall dimension of 42 times 55 times 3.2 mm3 when printed on a substrate of dielectric constant 4. It exhibits good radiation characteristics and moderate gain in the entire operating band. Details of the design along with experimental and simulation results are presented and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact ultra-wideband (UWB) printed slot antenna is described, suitable for integration with the printed circuit board (PCB) of a wireless, universal, serial-bus dongle. The design comprises of a near-rectangular slot fed by a coplanar waveguide (CPW) printed on a PCB of size 20 × 30 mm2. It has a large bandwidth covering the 3.1–10.6 GHz UWB band, with omnidirectional radiation patterns. Further, a notched band centered at 5.45 GHz wireless local area network bands is obtained within the wide bandwidth by inserting a narrow slot inside the tuning stub. Details of the antenna design are described, and the experimental results of the constructed prototype are presented. The time domain studies on the antenna shows a linear phase response throughout the band except at the notched frequency. The transient analysis of the antenna indicates very little pulse distortion confirming its suitability for high speed wireless connectivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An ultra-wideband (UWB) printed slot antenna, suitable for integration with the printed circuit board (PCB) of a wireless universal serial-bus (WUSB) dongle is presented. The design comprises a near-rectangular slot fed by a coplanar waveguide printed on a PCB of width 20 mm. The proposed design has a large bandwidth covering the 3.1-10.6 GHz UWB band, unaffected by the ground length, and omnidirectional radiation patterns. A linear phase response throughout the band further confirms its suitability for high-speed wireless connectivity.