6 resultados para waiting point nuclei
em Cochin University of Science
Resumo:
A forward - biased point contact germanium signal diode placed inside a waveguide section along the E -vector is found to introduce significant phase shift of microwave signals . The usefulness of the arrangement as a phase modulator for microwave carriers is demonstrated. While there is a less significant amplitude modulation accompanying phase modulation , the insertion losses are found to be negligible. The observations can be explained on the basis of the capacitance variation of the barrier layer with forward current in the diode
Resumo:
A compact dual-band printed antenna covering the 2.4 GHz (2400-2485 MHz) and 5.2 GHz (5150-5350 MHz) WLAN bands is presented. The experimental analysis shows a 2:1 VSWR bandwidth of up to 32 and 8% for 2.4 and 5.2 GHz, respectively. The measured radiation patterns are nearly omnidirectional, with moderate gain in both the WLAN bands.
Resumo:
The thesis entitled “Queueing Models with Vacations and Working Vacations" consists of seven chapters including the introductory chapter. In chapters 2 to 7 we analyze different queueing models highlighting the role played by vacations and working vacations. The duration of vacation is exponentially distributed in all these models and multiple vacation policy is followed.In chapter 2 we discuss an M/M/2 queueing system with heterogeneous servers, one of which is always available while the other goes on vacation in the absence of customers waiting for service. Conditional stochastic decomposition of queue length is derived. An illustrative example is provided to study the effect of the input parameters on the system performance measures. Chapter 3 considers a similar setup as chapter 2. The model is analyzed in essentially the same way as in chapter 2 and a numerical example is provided to bring out the qualitative nature of the model. The MAP is a tractable class of point process which is in general nonrenewal. In spite of its versatility it is highly tractable as well. Phase type distributions are ideally suited for applying matrix analytic methods. In all the remaining chapters we assume the arrival process to be MAP and service process to be phase type. In chapter 4 we consider a MAP/PH/1 queue with working vacations. At a departure epoch, the server finding the system empty, takes a vacation. A customer arriving during a vacation will be served but at a lower rate.Chapter 5 discusses a MAP/PH/1 retrial queueing system with working vacations.In chapter 6 the setup of the model is similar to that of chapter 5. The signicant dierence in this model is that there is a nite buer for arrivals.Chapter 7 considers an MMAP(2)/PH/1 queueing model with a nite retrial group
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576