2 resultados para visual pop-out

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secret sharing schemes allow a secret to be shared among a group of participants so that only qualified subsets of participants can recover the secret. A visual cryptography scheme (VCS) is a special kind of secret sharing scheme in which the secret to share consists of an image and the shares consist of xeroxed transparencies which are stacked to recover the shared image. In this thesis we have given the theoretical background of Secret Sharing Schemes and the historical development of the subject. We have included a few examples to improve the readability of the thesis. We have tried to maintain the rigor of the treatment of the subject. The limitations and disadvantages of the various forms secret sharing schemes are brought out. Several new schemes for both dealing and combining are included in the thesis. We have introduced a new number system, called, POB number system. Representation using POB number system has been presented. Algorithms for finding the POB number and POB value are given.We have also proved that the representation using POB number system is unique and is more efficient. Being a new system, there is much scope for further development in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC