5 resultados para visual object categorization
em Cochin University of Science
Resumo:
Secret sharing schemes allow a secret to be shared among a group of participants so that only qualified subsets of participants can recover the secret. A visual cryptography scheme (VCS) is a special kind of secret sharing scheme in which the secret to share consists of an image and the shares consist of xeroxed transparencies which are stacked to recover the shared image. In this thesis we have given the theoretical background of Secret Sharing Schemes and the historical development of the subject. We have included a few examples to improve the readability of the thesis. We have tried to maintain the rigor of the treatment of the subject. The limitations and disadvantages of the various forms secret sharing schemes are brought out. Several new schemes for both dealing and combining are included in the thesis. We have introduced a new number system, called, POB number system. Representation using POB number system has been presented. Algorithms for finding the POB number and POB value are given.We have also proved that the representation using POB number system is unique and is more efficient. Being a new system, there is much scope for further development in this area.
Resumo:
The detection of buried objects using time-domain freespace measurements was carried out in the near field. The location of a hidden object was determined from an analysis of the reflected signal. This method can be extended to detect any number of objects. Measurements were carried out in the X- and Ku-bands using ordinary rectangular pyramidal horn antennas of gain 15 dB. The same antenna was used as the transmitter and recei er. The experimental results were compared with simulated results by applying the two-dimensional finite-difference time-domain(FDTD)method, and agree well with each other. The dispersi e nature of the dielectric medium was considered for the simulation.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation