3 resultados para transport-related injury

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is a growing commercial interest in the ¢sh, Puntius ¢lamentosus, in the ornamental ¢sh trade in India and elsewhere.The trade is, however, hampered by severe mortalities during transport of the ¢sh owing to insu⁄cient data available on the use of anaesthetics. To resolve this problem, we evaluated the e⁄cacy of two anaesthetics, MS-222 and benzocaine, in sedating P. ¢lamentosus in simulated transportation experiments and used stress response parameters such as cortisol and blood glucose levels to perform assessments. We observed that MS-222 at 40 mg L 1 and benzocaine at 20mg L 1 were su⁄- cient to induce sedation for 48 h. Above these concentrations, both the anaesthetics adversely a¡ected the ¢sh and resulted inmortalities. Both anaesthetics signi¢cantly lowered the blood cortisol and glucose levels compared with the unsedated controls. Importantly, the anaesthetics treatment signi¢cantly lowered the post-transport mortality in the ¢sh. The results of the study show that MS-222 and benzocaine could be used as sedatives to alleviate transport- related stress in P. ¢lamentosus to improve their post-transport survival and hence reduce economic loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.