2 resultados para transformation induced plasticity

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unveiling the molecular and regulatory mechanisms that prevent in vitro transformation in shrimp remains elusive in the development of continuous cell lines, with an arduous history of over 25 years (Jayesh et al., 2012). Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. In addition, the regulatory mechanisms that prevent in vitro transformation and carcinoma in shrimps might provide new leads for the development of anti-ageing and anti-cancer interventions in human (Vogt, 2011) and in higher vertebrates. This highlights the importance of developing shrimp cell lines, to bring out effective prophylactics against shrimp viruses and for understanding the mechanism that induce cancer and ageing in human.. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. With this backdrop, the research described in this thesis attempted to develop molecular tools for induced in vitro transformation in lymphoid cells from Penaeus monodon and for the development of continuous cell lines using conventional and novel technologies to address the problems at cellular and molecular level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roughness and defects induced on few-layer graphene (FLG) irradiated by Ar+ ions at different energies were investigated using X-ray photoemission spectroscopy (XPS) and atomic force microscopy techniques. The results provide direct experimental evidence of ripple formation, sp2 to sp3 hybridized carbon transformation, electronic damage, Ar+ implantation, unusual defects and edge reconstructions in FLG, which depend on the irradiation energy. In addition, shadowing effects similar to those found in oblique-angle growth of thin films were seen. Reliable quantification of the transition from the sp2-bonding to sp3-hybridized state as a result of Ar+ ion irradiation is achieved from the deconvolution of the XPS C (1s) peak. Although the ion irradiation effect is demonstrated through the shape of the derivative of the Auger transition C KVV spectra, we show that the D parameter values obtained from these spectra which are normally used in the literature fail to account for the sp2 to sp3 hybridization transition. In contrast to what is known, it is revealed that using ion irradiation at large FLG sample tilt angles can lead to edge reconstructions. Furthermore, FLG irradiation by low energy of 0.25 keV can be a plausible way of peeling graphene layers without the need of Joule heating reported previously