3 resultados para thunderstorm

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thunderstorm is one of the most spectacular weather phenomena in the atmosphere. Many parts over the Indian region experience thunderstorms at higher frequency during pre-monsoon months (March- May), when the atmosphere is highly unstable because of high temperatures prevailing at lower levels. Most dominant feature of the weather during the pre-monsoon season over the eastern Indo-Gangetic plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’wester’ or ‘Kalbaishakhi’. The severe thunderstorms associated with thunder, squall line, lightning and hail cause extensive losses in agriculture, damage to structure and also loss of life. The casualty due to lightning associated with thunderstorms in this region is the highest in the world. The highest numbers of aviation hazards are reported during occurrence of these thunderstorms. In India, 72% of tornadoes are associated with this thunderstorm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severe local storms, including tornadoes, damaging hail and wind gusts, frequently occur over the eastern and northeastern states of India during the pre-monsoon season (March-May). Forecasting thunderstorms is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent non-linearity of their dynamics and physics. In this paper, sensitivity experiments are conducted with the WRF-NMM model to test the impact of convective parameterization schemes on simulating severe thunderstorms that occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated the model results with observation. In addition, a simulation without convective parameterization scheme was performed for each case to determine if the model could simulate the convection explicitly. A statistical analysis based on mean absolute error, root mean square error and correlation coefficient is performed for comparisons between the simulated and observed data with different convective schemes. This study shows that the prediction of thunderstorm affected parameters is sensitive to convective schemes. The Grell-Devenyi cloud ensemble convective scheme is well simulated the thunderstorm activities in terms of time, intensity and the region of occurrence of the events as compared to other convective schemes and also explicit scheme

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region