19 resultados para thermoplastic polcurethane (TPU)
em Cochin University of Science
Resumo:
Tear and wear properties of short kevlar fiber, thermoplastic polcurethane (TPU) composite with respect to fiber loading-and fiber onentation has been studied and the fracture surfaces were examined under scanning electron microscope (SEM). Tear strength first decreased up to 20 phr fiber loading and then gradually increased with increasing fiber loading. Anisotropy in tear strength was evident beyond a fiber loading of 20 phr. Tear fracture surface of unfilled TPU showed sinusoidal folding characteristics of high strength matrix. At low fiber loading the tear failure was mainly due to fibermatrix failure whereas at higher fiber loading the failure occurred by fiber breakage. Abrasion loss shows a continuous rise with increasing fiber loading, the loss in the transverse orientation of fibers being higher than that in the longitudinal orientation. The abraded surface showed lone cracks and ridges parallel to the direction of abrasion indicating an abrasive wear mechanism. In the presence of fber the abrasion loss was mainly due to fiber low.
Resumo:
The self adhesion behaviour of thermoplastic polyurethane (TPU) in itself and its composite with short Kevlar fibre with respect to contact time, temperature, pressure, and fibre loading has been studied. The adhesion strength showed two linear increments of different slopes with respect to the square root of time: with temperature and pressure of contact, the adhesion strength was improved. The maximum strength was obtained with 20 phr of short fibre in only one of the mating substrates in the peel test sample. The duration for wetting and diffusion was shifted to longer time intervals with fibres loaded in both the substrates.
Resumo:
The effect of an external flaw on the tensile strength of short kevlar fiber-thermoplastic composites has been studied with respect to fiber content, fiber orientation, location of the external flaw, and the temperature of test. The composites showed a three-step reduction in tensile strength with increasing flaw size. The critical flaw-length region was shifted to higher flaw-size levels with increasing fiber content. With increasing temperature, the critical flaw length was increased in the case of unfilled TPU, whereas it remained more or less constant in the case of short kevlar fiber-filled-TPU composite.
Resumo:
The flammability of short Kevlar aramide fiber-thermoplastic polyurethane (TPU) has been investigated with respect to fiber loading and various flame retardant additives such as halogen containing polymers, antimony oxide/chlorine donor combination, zinc borate, and aluminum hydroxide. Smoke generation was reduced drastically, while the oxygen index was reduced marginally in the presence of short fibers. The best improvement in the oxygen index was obtained with antimony oxide/chlorinated paraffin wax combination, in the weight ratio 1:6. A 70 phr loading of aluminum hydroxide improved LOI and reduced smoke generation.
Resumo:
The thermal degradation of short kevlar fibre-thermoplastic polyurethane (TPU) composites has been studied by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA showed that the thermal degradation of TPU takes place in two steps with peak maxima (T1max and T2ma,) at 383°C and 448°C, respectively. In the presence of 10-40 phr of short kevlar fibres, T1_ and T2max were shifted to lower temperatures. The temperature of onset of degradation was increased from 245 to 255°C at 40 parts per hundred rubber (phr) fibre loading. Kinetic studies showed that the degradation of TPU and kevlar-TPU composite follows first-order reaction kinetics. The DSC study showed that there is an improvement in thermal stability of TPU in the presence of 20 phr of short kevlar fibres.
Resumo:
Latex waste like glove waste was effectively modified using a new reclaiming agent, thiocarbanilide. This modified waste was blended with linear low-density polyethylene (LLDPE) to develop a novel thermoplastic elastomer. Both uncrosslinked and dynamically crosslinked blends were prepared and their properties were studied. The results were found to be comparable to those of conventional thermoplastic elastomers.
Resumo:
Latex waste products contain rubber hydrocarbon of very high quality, which is only lightly cross linked. Selected wastes such as thread waste and glove waste were modified into processable materials by a novel economic process and thermoplastic elastomers were prepared by blending these modified waste materials with high density polyethylene in various proportions. The mechanical properties as well as the rheological behaviour of these blends were evaluated and compared with those of the natural rubber-high density polyethylene blends.
Resumo:
The effect of various processing parameters, such as nip gap, friction ratio and roll temperature, on the tensile properties of short Kevlar aramid fibre-thermoplastic polyurethane composite has been investigated and the tensile and tear fracture surfaces have been characterised using a scanning electron microscope. A nip gap of 0.45 mm, a friction ratio of 1.15 and a roll temperature of 62°C was found to give optimum mechanical properties. Scanning electron microscopy study revealed a higher extent of fibre orientation in the milling direction in the above condition.
Resumo:
Chemically modified novel thermo-reversible zinc sulphonated ionomers based on natural rubber (NR), radiation induced styrene grafted natural rubber (RI-SGNR), and chemically induced styrene grafted natural rubber (CI-SGNR) were synthesized using acetyl sulphate/zinc acetate reagent system. Evidence for the attachment of sulphonate groups has been furnished by FTIR spectra. which was supplanted by FTNMR results. Estimation of the zinc sulphonate group was done using spectroscopic techniques such as XRFS and ICPAES. The TGA results prove improvement in the therrno-oxidative stability of the modified natural rubber. Both DSC and DMTA studies show that the incorporation of the ionic groups affect the thermal transition of the base polymer. Retention of the improved physical properties of the novel ionomers even after three repeated cycles of mastication and molding at 120 degree C may be considered as the evidence for the reprocessabiJity of the ionomer. Effect of both particulate (carbon black. silica & zinc stearate) and fibrous fillers (nylon & glass) on the properties of the radiation induced styrene grafted natural rubber ionomer has been evaluated. Incorporation of HAF carbon black results in maximum improvement in physical properties. Silica reinforces the backbone chain and weakens the ionic associations. Zinc stearate plays the dual role of reinforcement and ptasticization. The nylon and glass filled lonorner compounds show good improvement in the physical properties in comparison with the neat ionomer. Dispersion and adhesion of the fillers in the ionomer matrix has been amply supported by their SEM micrographs. Microwave probing of the electrical behavior of the 26.5 ZnSRISGNR ionomer reveals that the maximum relative complex conductivity and the complex permittivity appear at the frequency of 2.6 GHz. The complex conductivity of the base polymer increases from 1.8x 10.12 S/cm to 3.3xlO·4 S/cm. Influence of fillers on the dielectric constant and conductivity of the new ionic thermoplastic elastomer has been studied. The ionomer I nylon compound shows the highest microwave conductivity. Use of the 26.5 ZnS-RISGNR ionomer as a compatibilizer for obtaining the technologically compatible blends from the immiscible SBR/NBR system has been verified. The heat fugitive ionic cross-linked natural rubber may be, therefore, useful as an alternative to vulcanized rubber and thermoplastic elastomer
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology.
Resumo:
The microwave and electrical applications of some important conducting polymers are analyzed in this investigation.One of the major drawbacks of conducting polymers is their poor processability,and a solution to overcome this is sought in this investigation.Conducting polymer thermoplastic composites were prepared by the insitu polymerization method to improve the extent of miscibility probably to a semi IPN level.The attractive features of the conducting composite developed are excellent processability,good microwave and electrical conductivity,good microwave absorption,load sensitivity and satisfactory mechanical properties.The composite shows typical frequency selective microwave absorption and refelection behaviors.
Studies On Thermoplastic Elastomers With Special Reference To Triblock Copolymers And Nbr/Pvc Blends
Resumo:
Thermoplastic elastomers are a relatively new class of materials which compete with thermoset rubbers in some areas and thermoplastic materials in other areas. The main thrust of the present investigation is a comparative study’ on commercially .available triblock. styrene thermoplastic elastomers and those derived from blends of acrylonitrile-butadiene rubber and poly(vinyl chloride). The styrene—based thermoplastic elastomers are gaining acceptance as a replacement for both natural and synthetic rubber‘ in many‘ applications. TPEs based on blends of elastomers and plastics ix: the fastest growing segment of the broad class of thermoplastic elastomers. Broad applicability and simple technology of production are the attractive features of this class of TPES. NBR/PVC thermoplastic elastomers were selected for this investigation due to the versatility of PVC, its number one position, low cost. ability to Ina compounded into various flexible and rigid form with good physical and chemical and weathering properties etc., which will be passed over to PVC blends especially NBR/PVC blends which are known to form miscible systems
Resumo:
High styrene rubber ionomers were prepared by sulfonating styrene–butadiene rubber of high styrene content (high styrene rubber) in 1,2-dichloroethane using acetyl sulfate reagent, followed by neutralization of the precursor acids using methanolic zinc acetate. The ionomers were characterized using X-ray fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), dynamic mechanical analysis (DMA), and also by the evaluation of mechanical properties. The FTIR studies of the ionomer reveal that the sulfonate groups are attached to the benzene ring. The NMR spectra give credence to this observation. Results of DMA show an ionic transition (Ti) in addition to glass–rubber transition (Tg). Incorporation of ionic groups results in improved mechanical properties as well as retention of properties after three cycles of processing
Resumo:
The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.