14 resultados para the SIMPLE algorithm
em Cochin University of Science
Resumo:
In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest
Resumo:
A genetic algorithm has been used for null steering in phased and adaptive arrays . It has been shown that it is possible to steer the array null s precisely to the required interference directions and to achieve any prescribed null depths . A comparison with the results obtained from the analytic solution shows the advantages of using the genetic algorithm for null steering in linear array patterns
Resumo:
Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 °C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brφnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity.
Resumo:
This thesis addresses one of the emerging topics in Sonar Signal Processing.,viz.the implementation of a target classifier for the noise sources in the ocean, as the operator assisted classification turns out to be tedious,laborious and time consuming.In the work reported in this thesis,various judiciously chosen components of the feature vector are used for realizing the newly proposed Hierarchical Target Trimming Model.The performance of the proposed classifier has been compared with the Euclidean distance and Fuzzy K-Nearest Neighbour Model classifiers and is found to have better success rates.The procedures for generating the Target Feature Record or the Feature vector from the spectral,cepstral and bispectral features have also been suggested.The Feature vector ,so generated from the noise data waveform is compared with the feature vectors available in the knowledge base and the most matching pattern is identified,for the purpose of target classification.In an attempt to improve the success rate of the Feature Vector based classifier,the proposed system has been augmented with the HMM based Classifier.Institutions where both the classifier decisions disagree,a contention resolving mechanism built around the DUET algorithm has been suggested.
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
The objective of the study isto determine the average quantity of certain biochemical constituents of the haemolymph of Penaeus indicus and to verify the importanceof the simple correlation between the quantity or content of the biochemical constituents in the haemolymph and the size of the species, sex, moult and reproductive stages. The biochemical constituents studied are protein, free amino acids, glucose, total lipids, cholesterol, calcium, zinc, iron and manganese. The study Identifies the species specific haemolymph protein pattern by electrophoresis and determines the qualitative variations of haemolymph proteins with respect to sex, size, moult and reproductive stages. Major protein components such as hemocyanin and female specific protein are determined with a view to understand their function. The thesis also identifies the circulating haemocytes with a view to understand their specific role in the various physiological functions of the species. The thesis is presented in three chapters. Each chapter has an introduction to the particular aspect of study which includes a review of literature, methodology adopted for the study, the results obtained and discussion on the subject. The first Chapter deals with the biochemical constituents of the haemolymph, the second includes electrophoretic characterization of proteins in the haemolymph and the third Chapter deals with haemocyte identification and classification. A summary of the thesis and literature cited in the text are listed at the end.
Resumo:
This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.
Resumo:
The thesis relates to the investigations carried out on Rectangular Dielectric Resonator Antenna configurations suitable for Mobile Communication applications. The main objectives of the research are to: - numerically compute the radiation characteristics of a Rectangular DRA - identify the resonant modes - validate the numerically predicted data through simulation and experiment 0 ascertain the influence of the geometrical and material parameters upon the radiation behaviour of the antenna ° develop compact Rectangular DRA configurations suitable for Mobile Communication applications Although approximate methods exist to compute the resonant frequency of Rectangular DRA’s, no rigorous analysis techniques have been developed so far to evaluate the resonant modes. In this thesis a 3D-FDTD (Finite Difference Time Domain) Modeller is developed using MATLAB® for the numerical computation of the radiation characteristics of the Rectangular DRA. The F DTD method is a powerful yet simple algorithm that involves the discretimtion and solution of the derivative form of Maxwell’s curl equations in the time domain.
Resumo:
In the current study, epidemiology study is done by means of literature survey in groups identified to be at higher potential for DDIs as well as in other cases to explore patterns of DDIs and the factors affecting them. The structure of the FDA Adverse Event Reporting System (FAERS) database is studied and analyzed in detail to identify issues and challenges in data mining the drug-drug interactions. The necessary pre-processing algorithms are developed based on the analysis and the Apriori algorithm is modified to suit the process. Finally, the modules are integrated into a tool to identify DDIs. The results are compared using standard drug interaction database for validation. 31% of the associations obtained were identified to be new and the match with existing interactions was 69%. This match clearly indicates the validity of the methodology and its applicability to similar databases. Formulation of the results using the generic names expanded the relevance of the results to a global scale. The global applicability helps the health care professionals worldwide to observe caution during various stages of drug administration thus considerably enhancing pharmacovigilance
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
This paper explains the Genetic Algorithm (GA) evolution of optimized wavelet that surpass the cdf9/7 wavelet for fingerprint compression and reconstruction. Optimized wavelets have already been evolved in previous works in the literature, but they are highly computationally complex and time consuming. Therefore, in this work, a simple approach is made to reduce the computational complexity of the evolution algorithm. A training image set comprised of three 32x32 size cropped images performed much better than the reported coefficients in literature. An average improvement of 1.0059 dB in PSNR above the classical cdf9/7 wavelet over the 80 fingerprint images was achieved. In addition, the computational speed was increased by 90.18 %. The evolved coefficients for compression ratio (CR) 16:1 yielded better average PSNR for other CRs also. Improvement in average PSNR was experienced for degraded and noisy images as well