6 resultados para test-day model

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study is to investigate the role of operational flexibility for effective project management in the construction industry. The specific objectives are to: a) Identify the determinants of operational flexibility potential in construction project management b) Investigate the contribution of each of the determinants to operational flexibility potential in the construction industry c) Investigate on the moderating factors of operational flexibility potential in a construction project environment d) Investigate whether moderated operational flexibility potential mediates the path between predictors and effective construction project management e) Develop and test a conceptual model of achieving operational flexibility for effective project management The purpose of this study is to findout ways to utilize flexibility inorder to manage uncertain project environment and ultimately achieve effective project management. In what configuration these operational flexibility determinants are demanded by construction project environment in order to achieve project success. This research was conducted in three phases, namely: (i) exploratory phase (ii) questionnaire development phase; and (iii) data collection and analysis phase. The study needs firm level analysis and therefore real estate developers who are members of CREDAI, Kerala Chapter were considered. This study provides a framework on the functioning of operational flexibility, offering guidance to researchers and practitioners for discovering means to gain operational flexibility in construction firms. The findings provide an empirical understanding on kinds of resources and capabilities a construction firm must accumulate to respond flexibly to the changing project environment offering practitioners insights into practices that build firms operational flexibility potential. Firms are dealing with complex, continuous changing and uncertain environments due trends of globalization, technical changes and innovations and changes in the customers’ needs and expectations. To cope with the increasingly uncertain and quickly changing environment firms strive for flexibility. To achieve the level of flexibility that adds value to the customers, firms should look to flexibility from a day to day operational perspective. Each dimension of operational flexibility is derived from competences and capabilities. In this thesis only the influence on customer satisfaction and learning exploitation of flexibility dimensions which directly add value in the customers eyes are studied to answer the followingresearch questions: “What is the impact of operational flexibility on customer satisfaction?.” What are the predictors of operational flexibility in construction industry? .These questions can only be answered after answering the questions like “Why do firms need operational flexibility?” and “how can firms achieve operational flexibility?” in the context of the construction industry. The need for construction firms to be flexible, via the effective utilization of organizational resources and capabilities for improved responsiveness, is important because of the increasing rate of changes in the business environment within which they operate. Achieving operational flexibility is also important because it has a significant correlation with a project effectiveness and hence a firm’s turnover. It is essential for academics and practitioners to recognize that the attainment of operational flexibility involves different types namely: (i) Modification (ii) new product development and (iii) demand management requires different configurations of predictors (i.e., resources, capabilities and strategies). Construction firms should consider these relationships and implement appropriate management practices for developing and configuring the right kind of resources, capabilities and strategies towards achieving different operational flexibility types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Severe local storms, including tornadoes, damaging hail and wind gusts, frequently occur over the eastern and northeastern states of India during the pre-monsoon season (March-May). Forecasting thunderstorms is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent non-linearity of their dynamics and physics. In this paper, sensitivity experiments are conducted with the WRF-NMM model to test the impact of convective parameterization schemes on simulating severe thunderstorms that occurred over Kolkata on 20 May 2006 and 21 May 2007 and validated the model results with observation. In addition, a simulation without convective parameterization scheme was performed for each case to determine if the model could simulate the convection explicitly. A statistical analysis based on mean absolute error, root mean square error and correlation coefficient is performed for comparisons between the simulated and observed data with different convective schemes. This study shows that the prediction of thunderstorm affected parameters is sensitive to convective schemes. The Grell-Devenyi cloud ensemble convective scheme is well simulated the thunderstorm activities in terms of time, intensity and the region of occurrence of the events as compared to other convective schemes and also explicit scheme

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’westers’(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.