15 resultados para telomeric repeat amplification protocol
em Cochin University of Science
Resumo:
A single-feed rectangular-ring microstrip antenna is proposed for indoor communication under the Bluetooth protocol. The dimensions of the antenna together with the location of the feed point are optimized through field simulations in order to cover the Bluetooth bandwidth and to avoid linear polarization. The performance and the efficiency of the antenna are illustrated in a real indoor environment
Resumo:
We report unusual spectral narrowing and laser emission from polymer thin films doped with Coumarin 540 dye. The laser emission from the polymer films is found to be highly dependent upon the excitation length of the medium. Even a short length of 1.75 mm of the dye doped film gave rise to laser emission with FWHM of 0.3 nm for a pump intensity of 825 kW cm−2. The partial reflections from the broad lateral surfaces of the free standing films provided the optical feedback for the laser emission. Occurrence of well-resolved equally spaced resonant modes confirmed the effect of a Fabry–Perot-like optical cavity between the film surfaces
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
We report unusual spectral narrowing and laser emission from polymer thin films doped with Coumarin 540 dye. The laser emission from the polymer films is found to be highly dependent upon the excitation length of the medium. Even a short length of 1.75 mm of the dye doped film gave rise to laser emission with FWHM of 0.3 nm for a pump intensity of 825 kW cm−2. The partial reflections from the broad lateral surfaces of the free standing films provided the optical feedback for the laser emission. Occurrence of well-resolved equally spaced resonant modes confirmed the effect of a Fabry–Perot-like optical cavity between the film surfaces.
Resumo:
This thesis entitled' On Queues with Interruptions and Repeat or Resumption of Service' introduces several new concepts into queues with service interruption. It is divided into Seven chapters including an introductory chapter. The following are keywords that we use in this thesis: Phase type (PH) distribution, Markovian Arrival Process (MAP), Geometric Distribution, Service Interruption, First in First out (FIFO), threshold random variable and Super threshold random variable. In the second chapter we introduce a new concept called the 'threshold random variable' which competes with interruption time to decide whether to repeat or resume the interrupted service after removal of interruptions. This notion generalizes the work reported so far in queues with service interruptions. In chapter 3 we introduce the concept of what is called 'Super threshold clock' (a random variable) which keeps track of the total interruption time of a customer during his service except when it is realized before completion of interruption in some cases to be discussed in this thesis and in other cases it exactly measures the duration of all interruptions put together. The Super threshold clock is OIl whenever the service is interrupted and is deactivated when service is rendered. Throughout this thesis the first in first out service discipline is followed except for priority queues.
Resumo:
Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
Cooperative caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traffic considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the caching overhead and delay by reducing the number of control messages flooded in to the network. A cache discovery process based on location of neighboring nodes is developed for this. The cache replacement policy we propose aims at increasing the cache hit ratio. The simulation results gives a promising result based on the metrics of studies
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data
Resumo:
Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
In wireless sensor networks, the routing algorithms currently available assume that the sensor nodes are stationary. Therefore when mobility modulation is applied to the wireless sensor networks, most of the current routing algorithms suffer from performance degradation. The path breaks in mobile wireless networks are due to the movement of mobile nodes, node failure, channel fading and shadowing. It is desirable to deal with dynamic topology changes with optimal effort in terms of resource and channel utilization. As the nodes in wireless sensor medium make use of wireless broadcast to communicate, it is possible to make use of neighboring node information to recover from path failure. Cooperation among the neighboring nodes plays an important role in the context of routing among the mobile nodes. This paper proposes an enhancement to an existing protocol for accommodating node mobility through neighboring node information while keeping the utilization of resources to a minimum.