10 resultados para system dynamics performance

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chaotic dynamics of directly modulated semiconductor lasers with delayed optoelectronic feedback is studied numerically. The effects of positive and negative delayed optoelectronic feedback in producing chaotic outputs from such lasers with nonlinear gain reduction in its optimum value range is investigated using bifurcation diagrams. The results are confirmed by calculating the Lyapunov exponents. A negative delayed optoelectronic feedback configuration is found to be more effective in inducing chaotic dynamics to such systems with nonlinear gain reduction factor in the practical value range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this thesis is to study the dynamics of Josephson junction system in the presence of an external rf-biasing.A system of two chaotically synchronized Josephson junction is studied.The change in the dynamics of the system in the presence of at phase difference between the applied fields is considered. Control of chaos is very important from an application point of view. The role Of phase difference in controlling chaos is discussed.An array of three Josephson junctions iS studied for the effect of phase difference on chaos and synchronization and the argument is extended for a system of N Josephson junctions. In the presence of a phase difference between the external fields, the system exhibits periodic behavior with a definite phase relationship between all the three junctions.Itdeals with an array of three Josephson junctions with a time delay in the coupling term. It is observed that only the outer systems synchronize while the middle system remain uncorrelated with t-he other two. The effect of phase difference between the applied fields and time-delay on system dynamics and synchronization is also studied. We study the influence of an applied ac biasing on a serniannular Josephson junction. It is found the magnetic field along with the biasing induces creation and annihilation of fluxons in the junction. The I-V characteristics of the junction is studied by considering the surface loss term also in the model equation. The system is found to exhibit chaotic behavior in the presence of ac biasing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wind energy has emerged as a major sustainable source of energy.The efficiency of wind power generation by wind mills has improved a lot during the last three decades.There is still further scope for maximising the conversion of wind energy into mechanical energy.In this context,the wind turbine rotor dynamics has great significance.The present work aims at a comprehensive study of the Horizontal Axis Wind Turbine (HAWT) aerodynamics by numerically solving the fluid dynamic equations with the help of a finite-volume Navier-Stokes CFD solver.As a more general goal,the study aims at providing the capabilities of modern numerical techniques for the complex fluid dynamic problems of HAWT.The main purpose is hence to maximize the physics of power extraction by wind turbines.This research demonstrates the potential of an incompressible Navier-Stokes CFD method for the aerodynamic power performance analysis of horizontal axis wind turbine.The National Renewable Energy Laboratory USA-NREL (Technical Report NREL/Cp-500-28589) had carried out an experimental work aimed at the real time performance prediction of horizontal axis wind turbine.In addition to a comparison between the results reported by NREL made and CFD simulations,comparisons are made for the local flow angle at several stations ahead of the wind turbine blades.The comparison has shown that fairly good predictions can be made for pressure distribution and torque.Subsequently, the wind-field effects on the blade aerodynamics,as well as the blade/tower interaction,were investigated.The selected case corresponded to a 12.5 m/s up-wind HAWT at zero degree of yaw angle and a rotational speed of 25 rpm.The results obtained suggest that the present can cope well with the flows encountered around wind turbines.The areodynamic performance of the turbine and the flow details near and off the turbine blades and tower can be analysed using theses results.The aerodynamic performance of airfoils differs from one another.The performance mainly depends on co-efficient of performnace,co-efficient of lift,co-efficient of drag, velocity of fluid and angle of attack.This study shows that the velocity is not constant for all angles of attack of different airfoils.The performance parameters are calculated analytically and are compared with the standardized performance tests.For different angles of ,the velocity stall is determined for the better performance of a system with respect to velocity.The research addresses the effect of surface roughness factor on the blade surface at various sections.The numerical results were found to be in agreement with the experimental data.A relative advantage of the theoretical aerofoil design method is that it allows many different concepts to be explored economically.Such efforts are generally impractical in wind tunnels because of time and money constraints.Thus, the need for a theoretical aerofoil design method is threefold:first for the design of aerofoil that fall outside the range of applicability of existing calalogs:second,for the design of aerofoil that more exactly match the requirements of the intended application:and third,for the economic exploration of many aerofoil concepts.From the results obtained for the different aerofoils,the velocity is not constant for all angles of attack.The results obtained for the aerofoil mainly depend on angle of attack and velocity.The vortex generator technique was meticulously studies with the formulation of the specification for the right angle shaped vortex generators-VG.The results were validated in accordance with the primary analysis phase.The results were found to be in good agreement with the power curve.The introduction of correct size VGs at appropriate locations over the blades of the selected HAWT was found to increase the power generation by about 4%

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study by the researcher focuses attention on the problem of performance effectiveness among managers operating in one of the critical and socially important sectors of our economy namely commercial banking. The banking sector is selected for the study due to two reasons. Firstly, commercial banking plays an important role in the country's development. Secondly, for improving the efficiency of the banking system, we need to know more about the performance dynamics of the executives in our banking organizations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, the author has designed and developed all types of solar air heaters called porous and nonporous collectors. The developed solar air heaters were subjected to different air mass flow rates in order to standardize the flow per unit area of the collector. Much attention was given to investigate the performance of the solar air heaters fitted with baffles. The output obtained from the experiments on pilot models, helped the installation of solar air heating system for industrial drying applications also. Apart from these, various types of solar dryers, for small and medium scale drying applications, were also built up. The feasibility of ‘latent heat thermal energy storage system’ based on Phase Change Material was also undertaken. The application of solar greenhouse for drying industrial effluent was analyzed in the present study and a solar greenhouse was developed. The effectiveness of Computational Fluid Dynamics (CFD) in the field of solar air heaters was also analyzed. The thesis is divided into eight chapters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.