51 resultados para surface thermal lens
em Cochin University of Science
Resumo:
Dual beam mode-matched thermal lens method has been employed to measure the heat diffusion in nanofluid of silver with various volumes of rhodamine 6G, both dispersed in water. The important observation is an indication of temperature dependent diffusivity and that the overall heat diffusion is slower in the chemically prepared Ag sol compared to that of water. The experimental results can be explained assuming that Brownian motion is the main mechanism of heat transfer under the present experimental conditions. Light induced aggregation of the nanoparticles can also result in an anomalous diffusion behavior.
Resumo:
The subject of Photonics is concerned with the generation,control and utilization of photons for performing a variety of tasks.It came to existence as a consequence of the harmonious fusion of optical methods with electronic technology.Wide spread use of laser based methods in electronics is slowly replacing elecrtons with photons in the field of Communication,Control and Computing .Therefore,there is a need to promote the R & D activities in the area of Photonics and to generate well trained manpower in laser related fields.Development and characterization of photonic materials is an important subject of research in the field of Photonics.Optical and thermal characterization of photonic materials using thermal lens technique is a PhD thesis in the field of Photonics in which the author describes how thermal lens effect can be used to characterize themal and optical properties of photonic materials.Plausibility of thermal lens based logic gates is also presented in this thesis.
Resumo:
Thermal diffusivity measurements are carried out in certain organic liquids using the pulsed dual beam thermal lens technique. The 532 nm pulses from a frequency doubled Q-switched Nd:YAG laser are used as the heating source and an intensity stabilized He-Ne laser serves as the probe beam. Experimental determination of the characteristic time constant of the transient thermal lens signal is verified theoretically. Measured thermal diffusivity values are in excellent agreement with literature values.
Resumo:
Thermal lensing effect was studied in aqueous solutions of rhodamine B using 532 nm, 9 ns pulses from a Nd:YAG laser. A low intensity He-Ne laser beam was used for probing the thermal lens. Results obtained show that it is appropriate to use this technique for studying nonlinear absorption processes like two photon absorption or excited state absorption and for analyzing dimerization equilibria.
Resumo:
Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.
Resumo:
A sensitive method based on the principle of photothermal phenomena to realize optical logic gates is presented. A dual beam thermal lens method using low power cw lasers in a dye-doped polymer can be very effectively used as an alternate technique to perform the logical function such as NAND, AND and OR.
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.
Resumo:
The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical Parametric Oscillator as the excitation source. The effect of pH on the efficiency of energy transfer in fluorescein–rhodamine B mixture is presented.
Resumo:
Thermal lens signals in solutions of rhodamine B laser dye in methanol are measured using the dual beam pump-probe technique. The nature of variations of signal strength with concentration is found to be different for 514 and 488 nm Ar + laser excitations. However, both the pump wavelengths produce an oscillatory type variation of thermal lens signal amplitude with the concentration of the dye solution. Probable reasons for this peculiar behaviour (which is absent in the case of fluorescent intensity) are mentioned.
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
Two-photon absorption spectrum of aniline is recorded using thermal lens effect with optical parametric oscillator as the pump source. Studies show that the two-photon absorption spectrum observed corresponds to I Al -. I B2 transition of aniline.
Resumo:
In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.