3 resultados para supply chain performance
em Cochin University of Science
Resumo:
Coordination among supply chain members is essential for better supply chain performance. An effective method to improve supply chain coordination is to implement proper coordination mechanisms. The primary objective of this research is to study the performance of a multi-level supply chain while using selected coordination mechanisms separately, and in combination, under lost sale and back order cases. The coordination mechanisms used in this study are price discount, delay in payment and different types of information sharing. Mathematical modelling and simulation modelling are used in this study to analyse the performance of the supply chain using these mechanisms. Initially, a three level supply chain consisting of a supplier, a manufacturer and a retailer has been used to study the combined effect of price discount and delay in payment on the performance (profit) of supply chain using mathematical modelling. This study showed that implementation of individual mechanisms improves the performance of the supply chain compared to ‘no coordination’. When more than one mechanism is used in combination, performance in most cases further improved. The three level supply chain considered in mathematical modelling was then extended to a three level network supply chain consisting of a four retailers, two wholesalers, and a manufacturer with an infinite part supplier. The performance of this network supply chain was analysed under both lost sale and backorder cases using simulation modelling with the same mechanisms: ‘price discount and delay in payment’ used in mathematical modelling. This study also showed that the performance of the supply chain is significantly improved while using combination of mechanisms as obtained earlier. In this study, it is found that the effect (increase in profit) of ‘delay in payment’ and combination of ‘price discount’ & ‘delay in payment’ on SC profit is relatively high in the case of lost sale. Sensitivity analysis showed that order cost of the retailer plays a major role in the performance of the supply chain as it decides the order quantity of the other players in the supply chain in this study. Sensitivity analysis also showed that there is a proportional change in supply chain profit with change in rate of return of any player. In the case of price discount, elasticity of demand is an important factor to improve the performance of the supply chain. It is also found that the change in permissible delay in payment given by the seller to the buyer affects the SC profit more than the delay in payment availed by the buyer from the seller. In continuation of the above, a study on the performance of a four level supply chain consisting of a manufacturer, a wholesaler, a distributor and a retailer with ‘information sharing’ as coordination mechanism, under lost sale and backorder cases, using a simulation game with live players has been conducted. In this study, best performance is obtained in the case of sharing ‘demand and supply chain performance’ compared to other seven types of information sharing including traditional method. This study also revealed that effect of information sharing on supply chain performance is relatively high in the case of lost sale than backorder. The in depth analysis in this part of the study showed that lack of information sharing need not always be resulting in bullwhip effect. Instead of bullwhip effect, lack of information sharing produced a huge hike in lost sales cost or backorder cost in this study which is also not favorable for the supply chain. Overall analysis provided the extent of improvement in supply chain performance under different cases. Sensitivity analysis revealed useful insights about the decision variables of supply chain and it will be useful for the supply chain management practitioners to take appropriate decisions.
Resumo:
Model development for selection of location for refinery in India and identification of characteristics to be looked into when configuring it and to develop models for integrated supply chain planning for a refinery. Locating and removing inbound, internal and outbound logistic problems in an existing refinery and overall design of a logistic information system for a refinery are the main objectives of the study. A brief description of supply chain management (SCM), elements of SCM and their significance, logistics cost in petroleum industry and its impacts, and dynamics of petroleum its logistic practices are also to be presented. Scope of application of SCM in petroleum refinery will also be discussed. A review of the investigations carried out by earlier researches in the area of supply chain management in general and with specific reference to petroleum refining.
Resumo:
Ship recycling has been considered as the best means to dispose off an obsolete ship. The current state of art of technology combined with the demands of sustainable developments from the global maritime industrial sector has modified the status of erstwhile ‘ship breaking’ involving ship scrap business to a modern industry undertaking dismantling of ships and recycling/reusing the dismantled products in a supply chain of pre owned product market by following the principles of recycling. Industries will have to formulate a set of best practices and blend them with the engineering activities for producing better quality products, improving the productivity and for achieving improved performances related to sustainable development. Improved performance by industries in a sustainable development perspective is accomplished only by implementing the 4E principles, ie.,. ecofriendliness, engineering efficiency, energy conservation and ergonomics in their core operations. The present study has done a comprehensive investigation into various ship recycling operations for formulating a set of best practices.Being the ultimate life cycle stage of a ship, ship recycling activities incorporate certain commercial procedures well in advance to facilitate the objectives of dismantling and recycling/reusing of various parts of the vessel. Thorough knowledge regarding these background procedures in ship recycling is essential for examining and understanding the industrial business operations associated with it. As a first step, the practices followed in merchant shipping operations regarding the decision on decommissioning have been and made available in the thesis. Brief description about the positioning methods and important preparations for the most feasible ship recycling method ie.,. beach method have been provided as a part of the outline of the background information. Available sources of guidelines, codes and rules & regulations for ship recycling have been compiled and included in the discussion.Very brief summary of practices in major ship recycling destinations has been prepared and listed for providing an overview of the global ship recycling activities. The present status of ship recycling by treating it as a full fledged engineering industry has been brought out to establish the need for looking into the development of the best practices. Major engineering attributes of ship as a unique engineering product and the significant influencing factors on her life cycle stage operations have been studied and added to the information base on ship recycling. Role of ship recycling industry as an important player in global sustainable development efforts has been reviewed by analysing the benefits of ship recycling. A brief synopsis on the state of art of ship recycling in major international ship recycling centres has also been incorporated in the backdrop knowledgebase generation on ship recycling processes.Publications available in this field have been reviewed and classified into five subject categories viz., Infrastructure for recycling yards and methods of dismantling, Rules regarding ship recycling activities, Environmental and safety aspects of ship recycling, Role of naval architects and ship classification societies, Application of information technology and Demand forecasting. The inference from the literature survey have been summarised and recorded. Noticeable observations in the inference include need of creation of a comprehensive knowledgebase on ship recycling and its effective implementation in the industry and the insignificant involvement of naval architects and shipbuilding engineers in ship recycling industry. These two important inferences and the message conveyed by them have been addressed with due importance in the subsequent part of the present study.As a part of the study the importance of demand forecasting in ship recycling has been introduced and presented. A sample input for ship recycling data for implementation of computer based methods of demand forecasting has been presented in this section of the thesis.The interdisciplinary nature of engineering processes involved in ship recycling has been identified as one of the important features of this industry. The present study has identified more than a dozen major stake holders in ship recycling having their own interests and roles. It has also been observed that most of the ship recycling activities is carried out in South East Asian countries where the beach based ship recycling is done in yards without proper infrastructure support. A model of beach based ship recycling has been developed and the roles, responsibilities and the mutual interactions of the elements of the system have been documented as a part of the study Subsequently the need of a generation of a wide knowledgebase on ship recycling activities as pointed out by the literature survey has been addressed. The information base and source of expertise required to build a broad knowledgebase on ship recycling operations have been identified and tabulated. Eleven important ship recycling processes have been identified and a brief sketch of steps involved in these processes have been examined and addressed in detail. Based on these findings, a detailed sequential disassembly process plan of ship recycling has been prepared and charted. After having established the need of best practices in ship recycling initially, the present study here identifies development of a user friendly expert system for ship recycling process as one of the constituents of the proposed best practises. A user friendly expert system has been developed for beach based ship recycling processes and is named as Ship Recycling Recommender (SRR). Two important functions of SRR, first one for the ‘Administrators’, the stake holders at the helm of the ship recycling affairs and second one for the ‘Users’, the stake holders who execute the actual dismantling have been presented by highlighting the steps involved in the execution of the software. The important output generated, ie.,. recommended practices for ship dismantling processes and safe handling information on materials present onboard have been presented with the help of ship recycling reports generated by the expert system. A brief account of necessity of having a ship recycling work content estimation as part of the best practices has been presented in the study. This is supported by a detailed work estimation schedule for the same as one of the appendices.As mentioned earlier, a definite lack of involvement of naval architect has been observed in development of methodologies for improving the status of ship recycling industry. Present study has put forward a holistic approach to review the status of ship recycling not simply as end of life activity of all ‘time expired’ vessels, but as a focal point of integrating all life cycle activities. A new engineering design philosophy targeting sustainable development of marine industrial domain, named design for ship recycling has been identified, formulated and presented. A new model of ship life cycle has been proposed by adding few stages to the traditional life cycle after analysing their critical role in accomplishing clean and safe end of life and partial dismantling of ships. Two applications of design for ship recycling viz, recyclability of ships and her products and allotment of Green Safety Index for ships have been presented as a part of implementation of the philosophy in actual practice.