4 resultados para sulfur chemiluminescence detector
em Cochin University of Science
Resumo:
Prevulcanized natural rubber latex was prepared by the heating of the latex compound at 55°C for different periods of time (2, 4, 6, 8, and 10 h). The changes in the colloidal stability and physical properties were evaluated during the course of prevulcanization. The prevulcanized latex compounds were stored for 300 days, and the properties were monitored at different storage intervals (0, 20, 40, 60, 120, 180, 240, and 300 days). During prevulcanization, the mechanical stability time increased, and the viscosity remained almost constant. The tensile strength increased during storage for a period of 20 days. The degree of crosslinking, modulus, elongation at break, and chloroform number were varied with the time of storage.
Resumo:
The operation of a previously proposed terahertz (THZ) detector is formulated in detail. The detector is based on the hot-electron effect of the 2D electron gas (2DEG) in the quantum well (QW) of a GaAs/AIGaAs heterostructure. The interaction between the THz radiation and the 2DEG, the current enhancement due to hot -electron effect, and the noise performance of the detector are analyzed
Resumo:
This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.
Resumo:
The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.