10 resultados para spinning fineness

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses the factors which influence the productive and financial performance of the spinning mills in Kerala. The study will also help to assess the effect of ongoing reforms in the industrial sector in India. The main objective of the study is to identify and analyse the factors affecting the efficiency of the spinning mills. The unique feature of the study is that it compares the performance of private sector in relation to its public counterparts and also performance of small sector in relation to medium sector. The study is carried out with reference to the relative performance of differmills in Kerala and to identify the sources of differences in performance. The study covers twenty one spinning mills in Kerala, of which ten are in the private sector, four under NTC, three under co—operat;ive sector and four under KSTC.Measured in terms of firm-size fifteen belong to small size with a spindleage of less than 26,000 and six are in the medium size with a spindleage of 26,000 to 50,0OO.1 The period of study is 1982-83 to 1991-92. Hence, only those companies, of which data of 10 years upto 1991-92 wereavailable, are taken for study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current research investigates the possibility of using single walled carbon nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce nucleation in its melt crystallization, provide effective reinforcement and impart electrical conductivity. We adopt a simple melt compounding technique for incorporating the nanotubes into the polymer matrix. For attaining a better dispersion of the filler, an ultrasound assisted dissolution-evaporation method has also been tried. The resulting enhancement in the materials properties indicates an improved disentanglement of the nanotube ropes, which in turn provides effective matrix-filler interaction. PET-SWNT nanocomposite fibers prepared through melt spinning followed by subsequent drawing are also found to have significantly higher mechanical propertiesas compared to pristine PET fiber.SWNTs also find applications in composites based on elastomers such as natural rubber as they can impart electrical conductivity with simultaneous improvement in the mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study is on the nature, problems and prospects of the handloom industry in Kerala. The problems of the industry are mostly in the nature of low earnings of the workers, underutilisation of the existing capacity and low profit in its various sectors. The majority of the handloom co-operative societies are either dormant or facing liquidation. The income and employment of weavers are so pitiably low that they are living in utter poverty and starvation. Frequent price fluctuations of yarns, dyes and chemicals increase the cost of production and reduce the profitability. Consequently handloom fabrics are not able to compete with mill cloths and powerloom products. Accumulating the unsold stocks in the godowns of co-operative societies and with master weavers has become the practice of the day. Spinning mills in Kerala are producing only lower counts of yarns. S, handloom industry has to depend on textile mills in Tamil Nadu for higher counts of yarn. They create artificial scarcity and increase the prices exflorbitantly. Wage rates prevailing in Kerala are higher than those in Tamil Hadu. So rich master weavers are migrating to Tamil.Nadu and exporting the fabrics. under the label 'Kera1a Handlooms'. Governmental efforts to tackle the crisis by way of rebates and subsidies are found to be futile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

. The cotton mill industry is one of the important medium and large-scale industries in the State of Kerala. Due to the widespread development of the handloom industry in the State, there is an environment conducive to the growth of cotton spinning mills which produce yarn, the raw material required by the handloom industry. New spin— ing mills are being commissioned. But the performance of the existing cotton spinning and weaving mills in the State is not quite satisfactory. Hence an analysis has been carried out into the profitability and financial position of the industry in Kerala. The objective of the study is to make a financial analysis of the industry covering various aspects such as cost structure, productivity, asset structure, financial structure and working capital management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10–300 K. The low temperature dc conductivity (I–V ) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various factors determine the applicability of rice husk ash (RHA) as a pozzolanic material. The amount and accessibility of reactive sites is thought to be a key factor. A structural study of RHA samples in relation to their reactivity has been performed; Silica in RHA formed by burning rice husk in a laboratory furnace under continuous supply of air have been characterized as a function of incineration temperature, time and cooling regime. The characterization methods included chemical analyses, conductivity measurements, microscopic analysis, X-ray diffraction (XRD) and 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR). In line with earlier observations, the analyses show that the highest amounts of amorphous silica occur in samples burnt in the range of 500 °C–700 °C. The 29Si NMR data allow direct identification of the reactive silanol sites in the RHA samples. De-convolution of the NMR spectra clearly shows that the quickly cooled RHA resulting from burning rice husk for 12 h at 500 °C has the highest amount of silanol groups. This sample also induced the largest drop in conductivity when added to a saturated calcium hydroxide solution giving an indication of its reactivity towards lime. Therefore, this RHA is the favorable sample to be used as pozzolanic cement additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.