3 resultados para spiders as prey

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food and feeding habits of fourteen demersal finfishes exploited off the Karnataka coast were studied to investigate trophic interactions within the marine food web. Index of Relative Importance (lRI),Ontogenetic, seasonal (pre-monsoon, monsoon and post-monsoon) variation in feeding and prey-predator relationship studies were conducted.The results of prey-predator trophic interaction studies identified four major trophic guilds based on the predators feeding similarity.Trophic guild I is 'copepod and detritus fceders'with an average group similarity of 61.4%. The second trophic guild, 'prawn and crab feeders'with an average similarity of 52.7%. 'Acetes feeders', the largest trophic guild with an average group similarity of 62.5%, composed of six demersal finfish species.The guild 'piscivores' is constituted by C. limba/us and P. arsius with an average similarity of 45%.For each predator, ontogenetic diet shift is common and is characterized by prey of low to high trophic level.Strong selection of certain prey types was observed in some predators while most of them avoided abundant prey.In addition to Acetes spp, strong predation impact was observed for penaeid prawns, epibenthic crabs and detritus.This information on trophic guilds and prey-predator interactions can be used to construct trophic model on the benthic ecosystem off Karnataka and to investigate fishery induced changes as well as predation impact of different animals on commercially important demersals

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabian Sea and the Bay of Bengal are both highly dynamic ecosystems, due to the seasonally reversing monsoon winds, but the processes affecting the mesozooplankton community remain poorly understood. These are important basins exhibiting enhanced biological production as a result of upwelling, winter cooling and other episodic events such as eddies and gyres. Zooplankters are primarily the prey for almost all fish larvae. Seasonal changes in the biogeochemical processes can strongly affect zooplankton density and distribution, which in turn, strongly affect the larval growth, and consequently, the pelagic fish recruitment. It is clear that plankton biomass and biogeochemical fluxes are not in steady state. Acoustic data on mesozooplankton abundance suggests that they also exist in the mesopelagic zone. Earlier studies were confined only to the upper 200 m and hence the structure of mesozooplankton community in the deeper layers was not well known. Copepods are the dominant mesoplankton group, and therefore the majority of the studies were focused on them. The planktonic ostracods are the second major crustacean group and at times, their swarms can outnumber all other planktonic groups. The understanding of the community structure of the ostracods is essential to establish their role in the marine food web. Mesozooplankton is responsible for the vertical flux of organic matter produced by phytoplankton and is assumed to be equivalent to new production (Eppley & Peterson, 1979). Since the fate of newly produced organic matter depends upon their consumers, the zooplankton biomass must be estimated in size fractions or taxonomic components to understand the vertical flux of organic carbon. It is thus important to update our knowledge on different groups of zooplankton on the basis of seasonal and temporal distribution. The distribution in space and time is essential for modeling the carbon cycling that structure the marine ecosystems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nearshore marine ecosystem is a dynamic environment impacted by many activities, especially the coastal waters and sediments contiguous to major urban areas. Although heavy metals are natural constituents of the marine environment, inputs are considered to be conservative pollutants and are potentially toxic, accumulate in the sediment, are bioconcentrated by organisms and may cause health problems to humans via the food chain. A variety of metals in trace amounts are essential for biological processes in all organisms, but excessive levels can be detrimental by acting as enzyme inhibitors. Discharge of industrial wastewater, agriculture runoff and untreated sewage pose a particularly serious threat to the coastal environment of Kerala, but there is a dearth of studies in documenting the contaminant metals. This study aimed principally to assess such contamination by examining the results of heavy metal (Cu, Pb, Cr, Ni, Zn, Cd and Hg) analysis in seawater, sediment and benthic biota from a survey of five transects along the central and northern coast of Kerala in 2008 covering a 10.0 km stretch of near shore environment in each transect. Trophic transfer of metal contaminants from aquatic invertebrates to its predators was also assessed, by employing a suitable benthic food chain model in order to understand which all metals are undergoing biotransference (transfer of metals from a food source to consumer).The study of present contamination levels will be useful for potential environmental remediation and ecosystem restoration at contaminated sites and provides a scientific basis for standards and protective measures for the coastal waters and sediments. The usefulness of biomonitor proposed in this study would allow identification of different bioavailable metals as well as provide an assessment of the magnitude of metal contamination in the coastal marine milieu. The increments in concentration of certain metals between the predator and prey discerned through benthic food chain can be interpreted as evidence of biotransference.