27 resultados para spatial cluster
em Cochin University of Science
Resumo:
In the present investigation, an attempt is made to study late Quaternary foraminiferal and pteropod records of the shelf of northern Kerala and to evaluate their potentiality in paleocenographic and paleoclimatic reconstruction. The study gives details of sediment cores, general characteristics of foraminifera and pteropod species recorded from the examined samples and their systematic classification, spatial distribution of Recent foraminifera and pteropods and their response to varying bathymetry, nature of substrate, organic matter content in sediment and hydrography across the shelf. An attempt is also made to establish an integrated chronostratigraphy for the examined core sections. An effort is also made to identify microfaunal criteria useful in biostratigraphic division in shallow marine core sections. An attempt is made to infer various factors responsible for the change in microfaunal assemblage. Reconstruction of sea level changes during the last 36,000 years was attempted based on the pteropod record. The study reveals a bathymetric control on benthic/planktic (BF/PF) foraminiferal and pteropods/planktic foraminiferal (Pt/PF) abundance ratio. Bathymetric distribution pattern of BF/PF ratio is opposite to the (Pt/PF) ratio with decreasing trend of former from the shore across the shelf. Quantitative benthic foraminiferal record in the surficial sediments reveals a positive correlation between the diversity and bathymetry. R-mode cluster analysis performed on 30n significant Recent benthic foraminiferal, determines three major assemblage.
Resumo:
The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.
Resumo:
In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.
Resumo:
Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.
Resumo:
Spatial and temporal analyses of the spectra of the laser induced plasma from a polytetrafluroethylene (PTFE) target obtained with the 1.06 mu m radiation from a Q-switched Nd:YAG laser have been carried out. The spatially resolved spectra of the plasma emission show that molecular bands of C2 (Swan bands) and CN are very intense in the outer regions of the plasma, whereas higher ionized states of carbon are predominant in the core region of the plasma emission. The vibrational temperature and population distribution in the different vibrational levels have been studied as a function of laser energy. From the time resolved studies, it has been observed that there exist fairly large time delays for the onset of emission from all the species in the outer region of the plasma. The molecular bands in each region exhibit much larger time delays in comparison to the ionic lines in the plasma.
Resumo:
YBa2Cu307 target was laser ablated, and the time-of-flight (TOF) distributions of Y, Y+., and YO in the resultant plasma were investigated as functions of distance from the target and laser energy density using emission spectroscopy. Up to a short distance from the target (-1.5 cm), TOF distributions show twin peaks for Y and YO, while only single-peak distribution is observed for Y+. At greater distances (>1.5 cm) all of them exhibit single-peak distribution. The twin peaks are assigned to species corresponding to those generated directly/m the vicinity of target surface and to those generated from collisional/recombination process.
Resumo:
Laser ablation of graphite has been carried out using 1.06mm radiation from a Q-switched Nd:YAG laser and the time of flight distribution of molecular C2 present in the resultant plasma is investigated in terms of distance from the target as well as laser fluences employing time resolved spectroscopic technique. At low laser fluences the intensities of the emission lines from C2 exhibit only single peak structure while beyond a threshold laser fluence, emission from C2 shows a twin peak distribution in time. The occurrence of the faster velocity component at higher laser fluences is explained as due to species generated from recombination processes while the delayed peak is attributed to dissociation of higher carbon clusters resulting in the generation of C2 molecule. Analysis of measured data provides a fairly complete picture of the evolution and dynamics of C2 species in the laser induced plasma from graphite.
Resumo:
Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.
Resumo:
Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.
Resumo:
Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.
Resumo:
The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
This thesis entitled spatial and temporal variarion of microbial community structure in surficial sediments of cochin estuary.In the estuarine and coastal systems, organic matter (OM) is derived not only from autochthonous primary production, but also from allochthonous (terrestrial) organic matter (OM) delivered by river discharge and runoff. A significant portion of the OM sinks through the water column and is ultimately stored in carbon pool in the sediments.Analysis of spatial and temporal variation in benthic microbial community of a tropical estuary was conducted for the first time using non selective measures that affirms that PLFA approach is a sensitive and reliable method in determining microbial community structures of surficial sediments of estuary.The close relationship between the concentrations of the microbial fatty acids and total biomass indicates that bacteria could account for the largest proportion of the biomass in the sediments.This is first study that has documented the changes in microbial community composition linkage to biotic and abiotic variables in benthic estuarine ecosystem. This contemporaneous community will be the backdrop for understanding the response of autochthonous community to increasing anthropogenic stress.